Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Background:
ADHD treatment includes medication, behavioral therapy, dietary changes, and special education. Stimulants are usually the first choice but may cause side effects like appetite loss and stomach discomfort, leading some to stop using them. Cognitive behavioral therapy (CBT) is effective but not always sufficient on its own. Research is increasingly exploring non-drug options, such as transcranial direct current stimulation (tDCS), which may boost medication effectiveness and improve results.
What is tDCS?
tDCS delivers a weak electric current (1.0–2.0 mA) via scalp electrodes to modulate brain activity, with current flowing from anode to cathode. Anodal stimulation increases neuronal activity, while cathodal stimulation generally inhibits it, though effects vary by region and neural circuitry. The impact of tDCS depends on factors such as current intensity, duration, and electrode shape. It targets cortical areas, often stimulating the dorsolateral prefrontal cortex for ADHD due to its role in cognitive control. Stimulation of the inferior frontal gyrus has also been shown to improve response inhibition, making it another target for ADHD therapy.
There is an ongoing debate about how effective tDCS is for individuals with ADHD. One study found that applying tDCS to the left dorsolateral prefrontal cortex can help reduce impulsivity symptoms in ADHD, whereas another study reported that several sessions of anodic tDCS did not lead to improvements in ADHD symptoms or cognitive abilities.
New Research:
Two recent meta-analyses have searched for a resolution to these conflicting findings. Both included only randomized controlled trials (RCTs) using either sham stimulation or a waitlist for controls.
Each team included seven studies in their respective meta-analyses, three of which appeared in both.
Both Wang et al. (three RCTs totaling 97 participants) and Wen et al. (three RCTs combining 121 participants) reported very large effect size reductions in inattention symptoms from tDCS versus controls. There was only one RCT overlap between them. Wang et al. had moderate to high variation (heterogeneity) in individual study outcomes, whereas Wen et al. had virtually none. There was no indication of publication bias.
Whereas Wen et al.’s same three RCTs found no significant reduction in hyperactivity/impulsivity symptoms, Wang et al. combined five RCTs with 221 total participants and reported a medium effect size reduction in impulsivity symptoms. This time, there was an overlap of two RCTs between the studies. Wen et al. had no heterogeneity, while Wang et al. had moderate heterogeneity. Neither showed signs of publication bias.
Turning to performance-based tasks, Wang et al. reported a medium effect size improvement in attentional performance from tDCS over controls (three RCTs totaling 136 participants), but no improvement in inhibitory control (five RCTs combining 234 persons).
Wang et al. found no significant difference in adverse events (four RCTs combining 161 participants) between tDCS and controls, with no heterogeneity. Wen et al. found no significant difference in dropout rates (4 RCTs totaling 143 individuals), again with no heterogeneity.
Wang et al. concluded, “tDCS may improve impulsive symptoms and inattentive symptoms among ADHD patients without increasing adverse effects, which is critical for clinical practice, especially when considering noninvasive brain stimulation, where patient safety is a key concern.”
Wen et al. further concluded, “Our study supported the use of tDCS for improving the self-reported symptoms of inattention and objective attentional performance in adults diagnosed with ADHD. However, the limited number of available trials hindered a robust investigation into the parameters required for establishing a standard protocol, such as the optimal location of electrode placement and treatment frequency in this setting. Further large-scale double-blind sham-controlled clinical trials that include assessments of self-reported symptoms and performance-based tasks both immediately after interventions and during follow-up periods, as well as comparisons of the efficacy of tDCS targeting different brain locations, are warranted to address these issues.”
The Take-Away:
Previous studies have shown mixed results on the benefits of this therapy on ADHD. These new findings suggest that tDCS may hold some real promise for adults with ADHD. While the technique didn’t meaningfully shift hyperactivity or impulsivity, it was well-tolerated and showed benefit, especially in self-reported symptoms. However, with only a handful of trials to draw from, it would be a mistake to suggest tDCS as a standard treatment protocol. Larger, well-designed studies are the next essential step to clarify where, how, and how often tDCS works best.

Many news outlets have reported an increase – or surge – in attention-deficit/hyperactivity disorder, or ADHD, diagnoses in both children and adults. At the same time, health care providers, teachers and school systems have reported an uptick in requests for ADHD assessments.
These reports have led some experts and parents to wonder whether ADHD is being overdiagnosed and overtreated.
As researchers who have spent our careers studying neurodevelopmental disorders like ADHD, we are concerned that fears about widespread overdiagnosis are misplaced, perhaps based on a fundamental misunderstanding of the condition.
Discussions about overdiagnosis of ADHD imply that you either have it or you don’t.
However, when epidemiologists ask people in the general population about their symptoms of ADHD, some have a few symptoms, some have a moderate level, and a few have lots of symptoms. But there is no clear dividing line between those who are diagnosed with ADHD and those who are not, since ADHD – much like blood pressure – occurs on a spectrum.
Treating mild ADHD is similar to treating mild high blood pressure – it depends on the situation. Care can be helpful when a doctor considers the details of a person’s daily life and how much the symptoms are affecting them.
Not only can ADHD symptoms be very different from person to person, but research shows that ADHD symptoms can change within an individual. For example, symptoms become more severe when the challenges of life increase.
ADHD symptoms fluctuate depending on many factors, including whether the person is at school or home, whether they have had enough sleep, if they are under a great deal of stress or if they are taking medications or other substances. Someone who has mild ADHD may not experience many symptoms while they are on vacation and well rested, for example, but they may have impairing symptoms if they have a demanding job or school schedule and have not gotten enough sleep. These people may need treatment for ADHD in certain situations but may do just fine without treatment in other situations.
This is similar to what is seen in conditions like high blood pressure, which can change from day to day or from month to month, depending on a person’s diet, stress level and many other factors.
ADHD symptoms start in early childhood and typically are at their worst in mid-to late childhood. Thus, the average age of diagnosis is between 9 and 12 years old. This age is also the time when children are transitioning from elementary school to middle school and may also be experiencing changes in their environment that make their symptoms worse.
Classes can be more challenging beginning around fifth grade than in earlier grades. In addition, the transition to middle school typically means that children move from having all their subjects taught by one teacher in a single classroom to having to change classrooms with a different teacher for each class. These changes can exacerbate symptoms that were previously well-controlled. Symptoms can also wax and wane throughout life.
Psychiatric problems that often co-occur with ADHD, such as anxiety or depression, can worsen ADHD symptoms that are already present. These conditions can also mimic ADHD symptoms, making it difficult to know which to treat. High levels of stress leading to poorer sleep, and increased demands at work or school, can also exacerbate or cause ADHD-like symptoms.
Finally, the use of some substances, such as marijuana or sedatives, can worsen, or even cause, ADHD symptoms. In addition to making symptoms worse in someone who already has an ADHD diagnosis, these factors can also push someone who has mild symptoms into full-blown ADHD, at least for a short time.
The reverse is also true: Symptoms of ADHD can be minimized or reversed in people who do not meet full diagnostic criteria once the external cause is removed.
Clinicians diagnose ADHD based on symptoms of inattention, hyperactivity and impulsivity. To make an ADHD diagnosis in children, six or more symptoms in at least one of these three categories must be present. For adults, five or more symptoms are required, but they must begin in childhood. For all ages, the symptoms must cause serious problems in at least two areas of life, such as home, school or work.
Current estimates show that the strict prevalence of ADHD is about 5% in children. In young adults, the figure drops to 3%, and it is less than 1% after age 60. Researchers use the term “strict prevalence” to mean the percentage of people who meet all of the criteria for ADHD based on epidemiological studies. It is an important number because it provides clinicians and scientists with an estimate on how many people are expected to have ADHD in a given group of people.
In contrast, the “diagnosed prevalence” is the percentage of people who have been diagnosed with ADHD based on real-world assessments by health care professionals. The diagnosed prevalence in the U.S. and Canada ranges from 7.5% to 11.1% in children under age 18. These rates are quite a bit higher than the strict prevalence of 5%.
Some researchers claim that the difference between the diagnosed prevalence and the strict prevalence means that ADHD is overdiagnosed.
We disagree. In clinical practice, the diagnostic rules allow a patient to be diagnosed with ADHD if they have most of the symptoms that cause distress, impairment or both, even when they don’t meet the full criteria. And much evidence shows that increases in the diagnostic prevalence can be attributed to diagnosing milder cases that may have been missed previously. The validity of these mild diagnoses is well-documented.
Consider children who have five inattentive symptoms and five hyperactive-impulsive symptoms. These children would not meet strict diagnostic criteria for ADHD even though they clearly have a lot of ADHD symptoms. But in clinical practice, these children would be diagnosed with ADHD if they had marked distress, disability or both because of their symptoms – in other words, if the symptoms were interfering substantially with their everyday lives.
So it makes sense that the diagnosed prevalence of ADHD is substantially higher than the strict prevalence.
People who are concerned about overdiagnosis commonly worry that people are taking medications they don’t need or that they are diverting resources away from those who need it more. Other concerns are that people may experience side effects from the medications, or that they may be stigmatized by a diagnosis.
Those concerns are important. However, there is strong evidence that underdiagnosis and undertreatment of ADHD lead to serious negative outcomes in school, work, mental health and quality of life.
In other words, the risks of not treating ADHD are well-established. In contrast, the potential harms of overdiagnosis remain largely unproven.
It is important to consider how to manage the growing number of milder cases, however. Research suggests that children and adults with less severe ADHD symptoms may benefit less from medication than those with more severe symptoms.
This raises an important question: How much benefit is enough to justify treatment? These are decisions best made in conversations between clinicians, patients and caregivers.
Because ADHD symptoms can shift with age, stress, environment and other life circumstances, treatment needs to be flexible. For some, simple adjustments like classroom seating changes, better sleep or reduced stress may be enough. For others, medication, behavior therapy, or a combination of these interventions may be necessary. The key is a personalized approach that adapts as patients’ needs evolve over time.

Executive function impairment is a key feature of ADHD, with its severity linked to the intensity of ADHD symptoms. Executive function involves managing complex cognitive tasks for organized behavior and includes three main areas: inhibitory control (suppressing impulsive actions), working memory (holding information briefly), and cognitive flexibility (switching between different mental tasks). Improving executive functions is a critical objective in the management of ADHD.
Recent studies show that exercise interventions can enhance executive function in individuals with ADHD. Unlike traditional medications, which are costly and may cause side effects such as headaches, nausea, or growth issues, exercise can be incorporated into daily routines of children and adolescents without negative reactions.
Some studies report that aerobic exercise does not significantly improve executive function. However, most past reviews of aerobic exercise effects on executive function have focused on people without ADHD, with few examining interventions for children or adolescents with ADHD.
The Study:
A Chinese and South Korean study team conducted a systematic search of the peer-reviewed published literature to perform meta-analyses on randomized controlled trials (RCTs) specifically focused on aerobic exercise interventions for children and adolescents with ADHD.
All studies included were randomized controlled trials involving participants aged 6 to 18 years who had been clinically diagnosed with ADHD. The interventions consisted of various forms of aerobic exercise, while the control groups engaged in either non-exercise activities or daily routines. Each study was required to report at least one outcome measure with usable data for calculating the effect size on executive functioning.
The Results:
Meta-analysis of fifteen RCTs combining 653 children and adolescents with ADHD reported a medium to large effect size improvement in inhibitory control. There was no sign of publication bias, but wide heterogeneity (variation) in outcomes among studies.
Six to eight weeks of aerobic exercise produced modest improvements, with much greater gains seen after twelve weeks. Hour-long sessions were as effective as longer ones. Moderate intensity exercise proved more beneficial than vigorous intensity.
Meta-analysis of eight RCTs combining 399 children and adolescents with ADHD produced a medium effect size improvement in working memory. There was no sign of publication bias, and heterogeneity was moderate.
Once again, six to eight weeks of aerobic exercise produced modest improvements, with much greater gains seen after twelve weeks. Hour-long sessions were as effective as longer ones. But in this case moderate-to-vigorous intensity yielded the best results.
Meta-analysis of ten RCTs combining 443 children and adolescents with ADHD was associated with a medium to large effect size improvement in cognitive flexibility. There was no sign of either publication bias or heterogeneity. Neither the length of treatment, session time, or intensity affected the outcome.
The Take-Away:
The team concluded, “Our study indicates that aerobic exercise interventions have a positive impact with a moderate effect size on inhibitory control, working memory, and cognitive flexibility in children and adolescents with ADHD. However, the effectiveness of the intervention is influenced by factors such as the intervention period, frequency, session durations, intensity, and the choice between acute or chronic exercise. Specifically, chronic aerobic exercise interventions lasting 12 weeks or longer, with a frequency of 3 to 5 sessions per week, session durations of 60 min or more, and intensities that are moderate or moderate-to-vigorous, have the greatest overall effect… caution should be exercised when interpreting these findings due to the significant heterogeneity in inhibitory control and working memory.”

Vitamins play important roles in metabolism, immune regulation, and neurodevelopment. Recent studies show that deficiencies in vitamins like D, B6, B12, and folate are common in people with ADHD and ASD (autism spectrum disorder), and are associated with behavioral, cognitive, and brain development issues.
The Study:
A study team based in China has just performed a systematic search of the peer-reviewed medical literature to perform meta-analyses of clinical trials exploring vitamin interventions in the treatment of ADHD and ASD.
ADHD trials included participants with an official diagnosis. The primary intervention was vitamin supplements, while other treatments, including medications, remained unchanged or were excluded during the study period. ADHD outcomes included measurable changes in ADHD symptoms using validated rating scales and executive function measures.
Eligible studies included standard or sham control groups, crossover, parallel, or other clinical trial designs. In crossover studies, only first-phase data were analyzed to prevent carryover effects.
Ten trials with 852 participants met the standards, but meta-analysis showed no significant results. The outcomes varied widely, suggesting a need to distinguish among vitamins.
Results:
Of the five trials involving 347 participants that specifically evaluated vitamin D supplementation, results indicated a large effect size improvement in ADHD symptoms and executive function measures. The other five studies did not show any observable improvement.
Key limitations include:
The team concluded, “This meta-analysis supports the use of vitamin supplementation as a promising adjunctive treatment for ASD and ADHD. Vitamin B showed greater benefits in improving symptoms of ASD, while vitamin D was more effective in managing ADHD-related behaviors. These findings suggest that specific vitamins may target disorder-specific symptoms. Despite limitations such as the lack of trials on other vitamins and limited understanding of underlying mechanisms, vitamin therapy remains a low-cost, accessible option.”
An important limitation of this work is that the positive results for vitamin D were due to two studies from Iran. So far, no positive study has emerged from a non-Iranian study.
Interpretation:
The vitamin D findings are intriguing and could be important if replicated outside of Iran. Since supplementation is already widely recommended to those with limited sunlight exposure, clinicians may want to consider monitoring their patients’ vitamin D intake, especially in the winter months. It should be noted, however, that due to the limitations of this study, the results are by no means conclusive, and vitamin D should not be taken as a stand-alone treatment for ADHD.

Claims-based real-world data can reveal population-level trends in health among people with neurodevelopmental disorders. This new study examined the prevalence, demographics, and chronic comorbidities of adults and of children and adolescents with ADHD in a large national health plan. It also compared healthcare use and costs between those with and without ADHD.
A research team in the United States conducted an observational cohort study using claims data from more than 1.9 million adults and nearly 500,000 children and adolescents, comparing individuals diagnosed with ADHD to those without the diagnosis.
ADHD was diagnosed in 4% of adults and in 5% of children and adolescents.
Comorbidities By The Numbers:
Disruptive childhood disorders are behavioral problems marked by ongoing defiance, uncooperativeness, and aggression that affect a child's daily life and relationships. The main types, oppositional defiant disorder (ODD) and conduct disorder (CD), involve persistent anger and argumentativeness in ODD, and more severe actions like aggression, cruelty, and criminal behavior in CD. Without treatment, these common childhood disorders can continue into adulthood and raise the risks of substance use, violence, incarceration, and early death.
Disruptive childhood disorders were twenty times more frequent among children and adolescents with ADHD than among those without ADHD diagnosis, and fifteen times more frequent among adults with ADHD.
Bipolar disorder was twelve times more common among children and adolescents with ADHD than those without ADHD, and seven times more common among adults with ADHD.
Schizophrenia was eleven times more prevalent among children and adolescents with ADHD than those without ADHD, and three-and-a-half times more common among adults with ADHD.
Anxiety was nine times more frequent among children and adolescents with ADHD than among those without ADHD diagnosis, and more than five times more frequent among adults with ADHD.
Depression was eight times more common among children and adolescents with ADHD than those without ADHD, and more than five times more common among adults with ADHD.
Suicidal ideation was eight times more prevalent, and suicide attempt seven times more prevalent, among children and adolescents with ADHD than those without ADHD. Both suicidal ideation and suicide attempt were five times more common among adults with ADHD.
Gender dysphoria was almost six times more frequent among children and adolescents with ADHD than among those without ADHD diagnosis, and five times more frequent among adults with ADHD.
Eating disorders were over four times more common among children and adolescents with ADHD than those without ADHD, and five times more common among adults with ADHD.
Substance-related disorders were over six times more prevalent, and alcohol use disorder was six times more prevalent among children and adolescents with ADHD than those without ADHD, and four and three times more prevalent among adults with ADHD.
Increased Costs of Medical Care:
These comorbidities and ADHD led to higher medical costs. Children and adolescents with ADHD spent $610 more annually on healthcare than those without, while adults with ADHD had $1,684 higher average yearly expenditures than non-ADHD adults.
The Take-Away:
This large claims-based analysis of a national commercial insurer found ADHD diagnoses in roughly 4% of adults and 5% of children. It documented substantially higher rates of co-occurring behavioral-health conditions and markedly greater healthcare utilization and expenditures among those with ADHD. The authors report increased odds for several co-occurring diagnoses, as well as higher per-member-per-month (PMPM) spending and per-thousand-per-month (PTPM) utilization, largely driven by greater use of behavioral health services.
Importantly, these results come from cross-sectional, claims data within a commercially insured population: they describe associations, not causal relationships, and may not generalize to uninsured, publicly insured, or otherwise different populations. These findings, therefore, warrant cautious interpretation and highlight the need for longitudinal and more representative studies to clarify drivers of the increased burden and to inform care and policy.

Background:
Since the first in vitro fertilization (IVF) in 1978, assisted reproductive technology (ART) has led to over 10 million births worldwide.
There are four types of embryo transfers, depending on whether they are fresh or frozen, and on their developmental stage.
Fresh cleavage stage embryos are transferred on day 2 or 3 following fertilization and typically contain four to eight relatively large, undifferentiated cells. Fresh blastocyst embryos are transferred on day 5 or 6 after fertilization. At this point, they have developed over a hundred cells and have differentiated into two types: the inner cell mass, which develops into the fetus, and the outer cell layer, which forms the placenta.
Globally, more children are now born through assisted reproductive technology using frozen-thawed embryo transfer than fresh embryo transfer.
Research suggests that ART-conceived offspring may face increased risks of cardiovascular, musculoskeletal, chromosomal, urogenital diseases, and cancers. Might they also be at increased risk for ADHD?
Study:
Taiwan’s single-payer health insurance covers over 99% of people and records all their healthcare activity. Since 1998, it has kept an ART database for all couples registered for IVF treatment.
A Taiwanese research team reviewed all records for the five-year period from 2013 through 2017, ultimately analyzing 3,125 live singleton births from fresh cleavage stages, 1,332 from fresh blastocysts, 1,465 from frozen cleavage stages, and 4,708 from frozen blastocysts, alongside 878,643 naturally conceived singleton births.
The team controlled for the following potential confounders: pregnancy-induced hypertension, chronic hypertension, diabetes mellitus, gestational diabetes mellitus, unhealthy lifestyle, placenta previa, placenta abruption, preterm premature rupture of membrane, and postpartum hemorrhage.
Results:
With these adjustments, cleavage stage embryo transfers, whether fresh or frozen, were associated with a seven-fold higher rate of ADHD diagnosis in offspring than natural conception.
Frozen blastocyst embryo transfers were likewise linked to a seven-fold increase in ADHD diagnoses in offspring compared to natural conception. Notably, fresh blastocyst transfers showed a 19-fold increase, likely due to the smaller number of cases in this category.
The team concluded, “Compared to natural conception, ART is associated with higher risks, particularly for preterm birth, ADHD, and developmental delay.”
Conclusion:
This large national cohort suggests that ART-conceived singletons face higher rates of several adverse outcomes, including preterm birth, ADHD, and developmental delay. Clinicians and prospective parents should therefore weigh these potential associations when counseling and planning care, prioritize optimized ART protocols and perinatal management, and ensure early developmental surveillance for ART-conceived children so concerns can be identified and addressed promptly.
It is important to note that the findings also point to the likely contribution of underlying parental infertility in these developmental outcomes. Future research should aim to disentangle parental- versus procedure-related risks to clarify absolute risk magnitudes. As always, associations of this time should not be interpreted as causal due to the inability of observational studies to rule out all possible confounding factors.
Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental conditions, yet many young people, especially girls, receive a diagnosis late or not at all. This matters, because a delayed diagnosis often means missed opportunities for support, treatment, and improved long-term outcomes. A recent study by Barclay and colleagues (2024) sheds new light on why ADHD recognition is inconsistent, and what we can do about it.
Researchers analyzed data from nearly 10,000 children in the UK Millennium Cohort Study. They compared children whose ADHD was recognized early (ages 5–7), later (ages 11–14), or not recognized at all, despite evidence of symptoms. The team also looked at differences between boys and girls to better understand why diagnosis patterns vary by sex.
The study highlights the importance of looking beyond the “classic” hyperactive child stereotype when considering ADHD. Clinicians should:
If you’re a parent, it’s important to trust your observations. If your child struggles with focus, organization, or emotional regulation—even if they are doing well academically or socially—these could still be signs of ADHD. Advocating for an evaluation can make a big difference.
This study makes clear that ADHD is not one-size-fits-all. Recognition often depends on how symptoms show up, how disruptive they appear, and even the child’s gender. By broadening our awareness and refining our screening practices, we can ensure that fewer children slip through the cracks and more receive the support they need early in life.

Parents and teachers often ask: Does ADHD medication actually improve grades and school performance? The answer is: yes, but with important limitations. Medications are very effective at reducing inattention, hyperactivity, and impulsivity but their impact on long-term academic outcomes like grades and test scores is not as consistent.
In the Classroom
The medications for ADHD consistently: Improve attention, reduce classroom disruptions, increase time spent on-task and help children complete more schoolwork and homework. Medication can help children with ADHD access learning by improving the conditions for paying attention and persisting with work.
Does Medication Improve Test Scores and Grades?
This is where the picture gets more complicated. Medications have stronger effect on how much work is completed but a weaker effect on accuracy. Many studies show that children on medication attempt more problems in reading, math, and spelling, but the number of correct answers doesn’t always improve as much. Some studies find small but significant improvements in national exam scores and higher education entrance tests during periods when children with ADHD are medicated.
Grades improve, as well, but modestly. Large registry studies in Sweden show that students who consistently take medication earn higher grades than those who don’t. However, these gains usually do not close the achievement gap with peers who do not have ADHD.
Keep in mind that small improvements for a group as a whole mean that some children are benefiting greatly from medication and others not at all. We have no way of predicting which children will improve and which do not.
Medication Alone Isn’t Enough
Academic success depends on more than just reducing inattention, hyperactivity and impulsivity. Skills like organization, planning, studying, and managing long-term projects are also critical. Medication cannot teach these skills.
So, in addition to medication, the patient's treatment program should include educational support (tutoring, structured study skills programs), behavioral interventions (parent training, classroom management strategies), and accommodations at school (extra time, reduced distractions, organizational aids) Parents should discuss with their prescriber which of these methods would be appropriate.
Conclusions
ADHD medication is a powerful tool for reducing symptoms and supporting learning. It improves test scores and grades for some children, especially when taken consistently. But it is not a magic bullet for academic success. The best results come when medication is combined with educational and behavioral supports that help children build the skills they need to thrive in school and beyond.
ADHD is usually framed as a dopamine-and-norepinephrine condition, but recent studies have revealed that serotonin may also play a significant role. To delve deeper into this, we conducted a systematic literature review of studies looking at serotonin, its receptors, and the serotonin transporter (SERT) in relation to ADHD. The result: serotonin appears to be an important piece of the puzzle, but the overall picture is quite complex.
An ADHD & Serotonin Literature Review:
The authors searched the literature without time limits and screened thousands of records to end up with 95 relevant publications. Those included animal/basic-science work, neuroimaging, pharmacodynamics, a couple of large genetic/transcriptomic studies (GWAS and a cortico-striatal TWAS), and a few clinical reports. Each paper was graded for quality: 17 high, 59 medium, and 19 low.
As the study points out, the idea that serotonin may play a role in the neurobiology of ADHD is not new, but this literature review “identified multiple individual strands of evidence gathered over several decades and brought them into a more coherent focus”. It concludes that serotonergic neurotransmission is implicated in ADHD. This doesn’t mean variations in serotonin levels cause ADHD, but that serotonin may be a plausible target for future treatments and research.
ADHD is polygenic and multi-systemic. For now, clinicians and patients should view serotonin as part of a complex network that may contribute to ADHD symptoms. More research is needed before making treatment decisions based on these findings.

Background:
A previous meta-analysis found that children born to mothers with diabetes had a 34% higher risk of developing ADHD compared to those born to non-diabetic mothers.
However, previous studies suffered methodological limitations, such as small sample sizes, case-control or cross-sectional designs, and insufficient adjustment for key confounders such as maternal socio-economic status, mental health conditions, obesity, and substance use disorders.
Moreover, many studies relied on self-reported maternal diabetes, and on non-clinical ADHD assessments, such as parental reports or screening tools, which are prone to bias and inaccuracies.
Furthermore, the role of maternal antidiabetic medication use in relation to ADHD risk has rarely been examined. Antidiabetic medications are effective in controlling high blood sugar during pregnancy, but many can cross the placenta and the blood-brain barrier, raising concerns about potential effects on fetal brain development.
Study:
To address these gaps, an Australian study team used a large cohort of linked health administrative data from New South Wales to investigate both the association between maternal diabetes and the risk of ADHD and the independent effect of prenatal exposure to antidiabetic medications.
The study encompassed all mother-child pairs born from 2003 through 2005, with follow-up conducted through 2018 to monitor hospital admissions related to ADHD. That yielded a final cohort of almost 230,000 mother-child pairs.
The team adjusted for potential confounders including maternal age, socioeconomic status, previous children, pregnancy-related hypertension, caesarean delivery, birth order and plurality, maternal anxiety, depression, schizophrenia, bipolar disorder, substance use (alcohol, tobacco, stimulants, opioids, cannabis), and child factors such as Apgar score, sex, prematurity, and low birth weight.
Results:
For maternal diabetes overall, there was no significant association with offspring ADHD. That was also true when broken down into pre-existing maternal diabetes and gestational (pregnancy-induced) diabetes.
In a subset of 11,668 mother-child pairs, including 3,210 involving exposure to antidiabetic medications, there was likewise no significant association with offspring ADHD.
Conclusion:
The team concluded, “Our findings did not support the hypothesis that maternal diabetes increases the risk of ADHD in children. Additionally, maternal use of antidiabetic medication was not associated with ADHD.”
This study highlights the importance of high-quality research. A previous meta-analysis linking ADHD and maternal diabetes did not appropriately adjust for confounders and cited many small studies that may have included biased self-report scales. This large, registry-based cohort study of nearly 230,000 mother–child pairs found no evidence that maternal diabetes—whether pre-existing or gestational—or prenatal exposure to antidiabetic medications was associated with subsequent offspring ADHD as measured by hospital-recorded ADHD outcomes. The study’s strengths include its population scale, prolonged follow-up, and extensive adjustment for maternal and perinatal confounders (including maternal mental health and substance-use disorders), which address many limitations of earlier, smaller studies that reported elevated risks.

Background:
The COVID-19 pandemic brought environmental changes that may have influenced ADHD symptoms and contributed to higher diagnosis rates. School closures, the transition to remote learning, and restrictions on outdoor activities led to increased screen time and isolation, both of which can affect attention and behavioral regulation. Children and adolescents, who usually depend on social interactions and structured routines, experienced significant disruptions during this period.
Method:
South Korea has a nationwide single-payer health insurance system that keeps detailed health records on virtually its entire population. To explore the impact of COVID-19 on ADHD, a Korean research team used a database established by the Korean government that tracked all patients with COVID-19 between 2020 and 2023, nationwide COVID vaccination records, and insurance claims. They included all participants aged 6 through 29 years old.
The onset of ADHD was determined by diagnosis combined with the prescription of ADHD medication.
Altogether, the study encompassed almost 1.2 million Koreans, including over 150,000 children (6-12), more than 220,000 adolescents (13-19), and almost 800,000 young adults (20-29).
The team adjusted for age, sex, income, Charlson Comorbidity Index, and medical visits. The Charlson Comorbidity Index predicts the mortality for a patient who may have a range of 17 concurrent conditions, such as heart disease, AIDS, or cancer.
Results:
With these adjustments, young adults known to be infected with COVID-19 were about 40% more likely to be subsequently diagnosed with ADHD than their counterparts with no record of such infection.
Adolescents known to be infected with COVID-19 were about twice as likely to be subsequently diagnosed with ADHD than their counterparts with no record of such infection.
Children known to be infected with COVID-19 were 2.4 times as likely to be subsequently diagnosed with ADHD than their counterparts with no record of such infection.
All these results were highly significant, and point to much greater impact on the youngest persons infected.
Interpretation:
The team concluded, “our nationwide study revealed that the COVID-19 pandemic significantly influenced ADHD incidence (raising incidence between 2020 and 2023), with SARS-CoV-2 infection identified as a critical risk factor,” and “In particular, early intervention and neurological evaluations are needed for children, adolescents, and young adults with a history of SARS-CoV-2 infection.”