Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
May 15, 2025
.png)
We know that Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental condition with strong biological and genetic underpinnings; However, emerging research suggests that early environmental influences—particularly parent–child interactions—may shape how ADHD traits, such as impulsivity and delay aversion, are expressed during development.
This longitudinal study explored whether negative parental reactions during moments of delay contribute to the intensification of ADHD-related behaviors in preschool-aged children. A total of 112 mother–child pairs from the UK and Hong Kong participated. Children were screened for ADHD traits using the Strengths and Difficulties Questionnaire, ensuring a range of symptom severity.
The experimental task—the Parent–Child Delay Frustration Task (PC-DeFT)—was designed to assess how children responded to brief, unpredictable waiting periods during a game-like activity, and how parents reacted in turn. During the task, children operated a button to change a red light to green, allowing their parent to retrieve a toy item. While most trials had no delay, six included unexpected 5–10 second pauses, creating mild frustration. Trained observers recorded children’s behavioral responses and parents' emotional reactions.
At follow-up (12–18 months later), teacher ratings revealed that children whose parents showed more negative reactions during delay trials (e.g., impatience, criticism) were more likely to exhibit increases in ADHD traits—especially impulsivity and difficulty waiting. Importantly, this link was mediated by increases in delay aversion, a motivational style where the child seeks to avoid frustrating waiting experiences. No such associations were found in free play or non-delay tasks, underscoring the specificity of this interaction.
The study’s findings suggest that, while these interactions do not cause ADHD, early social environments can influence how and when symptoms manifest. Interventions aimed at supporting positive parent–child interactions—particularly in challenging contexts like waiting—may help shape the developmental trajectory of children predisposed to ADHD.
Chan WWY, Shum KK, Downs J, Sonuga-Barke EJS. Are ADHD trajectories shaped by the social environment? A longitudinal study of maternal influences on the preschool origins of delay aversion. J Child Psychol Psychiatry. 2025 Jun;66(6):892-905. doi: 10.1111/jcpp.14103. Epub 2024 Dec 22. PMID: 39710599; PMCID: PMC12062859.
A large international research team has just released a detailed analysis of studies looking at the connection between parents' mental health conditions and their children's mental health, particularly focusing on ADHD (Attention Deficit Hyperactivity Disorder). This analysis, called a meta-analysis, involved carefully examining previous studies on the subject. By September 2022, they had found 211 studies, involving more than 23 million people, that could be combined for their analysis.
Most of the studies focused on mental disorders other than ADHD. However, when they specifically looked at ADHD, they found five studies with over 6.7 million participants. These studies showed that children of parents with ADHD were more than eight times as likely to have ADHD compared to children whose parents did not have ADHD. The likelihood of this result happening by chance was extremely low, meaning the connection between parental ADHD and child ADHD is strong.
The researchers wanted to figure out how common ADHD is among children of parents both with and without ADHD. To do this, they first analyzed 65 studies with about 2.9 million participants, focusing on children whose parents did not have ADHD. They found that around 3% of these children had ADHD.
Next, they analyzed five studies with over 44,000 cases where the parents did have ADHD. In this group, they found that 32% of the children also had ADHD, meaning about one in three. This is a significant difference—children of parents with ADHD are about ten times more likely to have the condition than children whose parents who do not have ADHD.
The researchers also wanted to see if other mental health issues in parents, besides ADHD, were linked to ADHD in their children. They analyzed four studies involving 1.5 million participants and found that if a parent had any mental health disorder (like anxiety, depression, or substance use issues), the child’s chances of having ADHD increased by 80%. However, this is far less than the 840% increase seen in children whose parents specifically had ADHD. In other words, ADHD is much more likely to be passed down in families compared to other mental disorders.
The study had a lot of strengths, mainly due to the large number of participants involved, which helps make the findings more reliable. However, there were also some limitations:
Despite these limitations, the research team concluded that their analysis provides strong evidence that children of parents with ADHD or other serious mental health disorders are at a higher risk of developing mental disorders themselves. While more research is needed to fill in the gaps, the findings suggest that it would be wise to carefully monitor the mental health of children whose parents have these conditions to provide support and early intervention if needed
Raising children is not easy. I should know.
As a clinical psychologist, I've helped parents learn the skills they need to be better parents. And my experience raising three children confirmed my clinical experience.
Parenting is a tough job under the best of circumstances, but it is even harder if the parent has ADHD.
For example, an effective parent establishes rules and enforces them systematically. This requires attention to detail, self-control, and good organizational skills. Given these requirements, it is easy to see how ADHD symptoms interfere with parenting. These observations have led some of my colleagues to test the theory that treating ADHD adults with medication would improve their parenting skills. I know about two studies that tested this idea.
In 2008, Dr. Chronis-Toscano and colleagues published a study using a sustained-release form of methylphenidate for mothers with ADHD. As expected, the medication decreased their symptoms of inattention and hyperactivity/impulsivity. The medication also reduced the mother's use of inconsistent discipline and corporal punishment and improved their monitoring and supervision of their children.
In a 2014 study, Waxmonsky and colleagues observed ADHD adults and their children in a laboratory setting once when the adults were off medication and once when they were on medication. They used the same sustained-release form of amphetamine for all the patients. As expected, the medications reduced ADHD symptoms in the parents. This laboratory study is especially informative because the researchers made objective ratings of parent-child interactions, rather than relying on the parents' reports of those interactions. Twenty parents completed the study. The medication led to less negative talk and commands and more praise by parents. It also reduced negative and inappropriate behaviors in their children.
Both studies suggest that treating ADHD adults with medication will improve their parenting skills. That is good news. But they also found that not all parenting behaviors improved. That makes sense. Parenting is a skill that must be learned. Because ADHD interferes with learning, parents with the disorder need time to learn these skills. Medication can eliminate some of the worst behaviors, but doctors should also provide adjunct behavioral or cognitive-behavioral therapies that could help ADHD parents learn parenting skills and achieve their full potential as parents.
A German team of researchers performed a comprehensive search of the medical literature and identified 35randomized controlled trials (RCTs) published in English that explored this question. Participating children were between three and six years old. Children with intellectual disabilities, sensory disabilities, or specific neurological disorders such as epilepsy were excluded.
The total number of participating preschoolers was over three thousand, drawn almost exclusively from the general population, meaning these studies were not specifically evaluating effects on children with ADHD. But given that ADHD results in poorer executive functioning, evidence of the effectiveness of cognitive training would suggest it could help partially reverse such deficits.
RCTs assign participants randomly to a treatment group and a group not receiving treatment but often receiving a placebo. But RCTs themselves vary in risk of bias, depending on:
After evaluating the RCTs by these criteria, the team performed a series of meta-analyses.
Combining the 23 RCTs with over 2,000 children that measured working memory, they found that cognitive training led to robust moderate improvements. Looking only at the eleven most rigorously controlled studies strengthened the effect, with moderate-to-large gains.
Twenty-six RCTs with over 2,200 children assessed inhibitory control. When pooled, they indicated a small-to-moderate improvement from cognitive training. Including only the seven most rigorously controlled studies again strengthened the effect, boosting it into the moderate effect zone.
Twelve RCTs with over 1,500 participants tested the effects of cognitive training on flexibility. When combined, they pointed to moderate gains. Looking at only the four well-controlled studies boosted the effect to strong gains. Yet here there was evidence of publication bias, so no firm conclusion can be drawn.
Only four studies with a combined total of 119 preschoolers tested the effects on ADHD ratings. The meta-analysis found a small but non-significant improvement, very likely due to insufficient sampling. As the authors noted, "some findings of the meta-analysis are limited by the insufficient number of eligible studies. Specifically, more studies are needed which use blinded assessments of subjective ratings of ADHD ... symptoms ..."
The authors concluded that their meta-analyses revealed significant, mostly medium-sized effects of the preschool interventions on core EFs [executive functions] in studies showing the low risk of bias."
EBI-ADHD:
If you live with ADHD, treat ADHD, or write about ADHD, you’ve probably run into the same problem: there’s a ton of research on treatments, but it’s scattered across hundreds of papers that don’t talk to each other. The EBI-ADHD website fixes that.
EBI-ADHD (Evidence-Based Interventions for ADHD) is a free, interactive platform that pulls together the best available research on how ADHD treatments work and how safe they are. It’s built for clinicians, people with ADHD and their families, and guideline developers who need clear, comparable information rather than a pile of PDFs. EBI-ADHD Database The site is powered by 200+ meta-analyses covering 50,000+ participants and more than 30 different interventions. These include medications, psychological therapies, brain-stimulation approaches, and lifestyle or “complementary” options.
The heart of the site is an interactive dashboard. You can:
The dashboard then shows an evidence matrix: a table where each cell is a specific treatment–outcome–time-point combination. Each cell tells you two things at a glance:
Clicking a cell opens more detail: effect sizes, the underlying meta-analysis, and how the certainty rating was decided.
EBI-ADHD is not just a curated list of papers. It’s built on a formal umbrella review of ADHD interventions, published in The BMJ in 2025. That review re-analyzed 221 meta-analyses using a standardized statistical pipeline and rating system.
The platform was co-created with 100+ clinicians and 100+ people with lived ADHD experience from around 30 countries and follows the broader U-REACH framework for turning complex evidence into accessible digital tools.
Why it Matters
ADHD is one of the most studied conditions in mental health, yet decisions in everyday practice are still often driven by habit, marketing, or selective reading of the literature. EBI-ADHD offers something different: a transparent, continuously updated map of what we actually know about ADHD treatments and how sure we are about it.
In short, it’s a tool to move conversations about ADHD care from “I heard this works” to “Here’s what the best current evidence shows, and let’s decide together what matters most for you.”
The Background:
Meta-analyses have previously suggested a link between maternal thyroid dysfunction and neurodevelopmental disorders (NDDs) in children, though some studies report no significant difference. Overweight and obesity are more common in children and adolescents with NDDs. Hypothyroidism is often associated with obesity, which may result from reduced energy expenditure or disrupted hormone signaling affecting growth and appetite. These hormone-related parameters could potentially serve as biomarkers for NDDs; however, research findings on these indicators vary.
The Study:
A Chinese research group recently released a meta-analysis examining the relationship between neurodevelopmental disorders (NDDs) and hormone levels – including thyroid, growth, and appetite hormones – in children and adolescents.
The analysis included peer-reviewed studies that compared hormone levels – such as thyroid hormones (FT3, FT4, TT3, TT4, TSH, TPO-Ab, or TG-Ab), growth hormones (IGF-1 or IGFBP-3), and appetite-related hormones (leptin, ghrelin, or adiponectin) – in children and adolescents with NDDs like ADHD, against matched healthy controls. To be included, NDD cases had to be first-diagnosis and medication-free, or have stopped medication before testing. Hormone measurements needed to come from blood, urine, or cerebrospinal fluid samples, and all studies were required to provide both means and standard deviations for these measurements.
Meta-analysis of nine studies encompassing over 5,700 participants reported a medium effect size increase in free triiodothyronine (FT3) in children and adolescents with ADHD relative to healthy controls. There was no indication of publication bias, but variation between individual study outcomes (heterogeneity) was very high. Further analysis showed FT3 was only significantly elevated in the predominantly inattentive form of ADHD (three studies), again with medium effect size, but not in the hyperactive/impulsive and combined forms.
Meta-analysis of two studies combining more than 4,800 participants found a small effect size increase in thyroid peroxidase antibody (TPO-Ab) in children and adolescents with ADHD relative to healthy controls. In this case, the two studies had consistent results. Because only two studies were involved, there was no way to evaluate publication bias.
The remaining thyroid hormone meta-analyses, involving 6 to 18 studies and over 5,000 participants in each instance, found no significant differences in levels between children and adolescents with ADHD and healthy controls.
Meta-analyses of six studies with 317 participants and two studies with 192 participants found no significant differences in growth hormone levels between children and adolescents with ADHD and healthy controls.
Finally, meta-analyses of nine studies with 333 participants, five studies with 311 participants, and three studies with 143 participants found no significant differences in appetite-related hormone levels between children and adolescents with ADHD and healthy controls.
The Conclusion:
The team concluded that FT3 and TPO-Ab might be useful biomarkers for predicting ADHD in youth. However, since FT3 was only linked to inattentive ADHD, and TPO-Ab’s evidence came from just two studies with small effects, this conclusion may overstate the meta-analysis results.
Our Take-Away:
Overall, this meta-analysis found only limited evidence that hormone differences are linked to ADHD. One thyroid hormone (FT3) was higher in children with ADHD—mainly in the inattentive presentation—but the findings varied widely across studies. Another marker, TPO-Ab, showed a small increase, but this came from only two studies, making the result less certain. For all other thyroid, growth, and appetite-related hormones, the researchers found no meaningful differences between children with ADHD and those without. While FT3 and TPO-Ab may be worth exploring in future research, the current evidence is not strong enough to consider them reliable biomarkers.
Background:
Recent progress in reproductive medicine has increased the number of children conceived via assisted reproductive techniques (ART). These include:
Although ART helps with infertility, there are concerns about its long-term effects on offspring, especially regarding neurodevelopment. Factors such as hormonal treatments, gamete manipulation, altered embryonic environments, as well as parental age and infertility, may influence brain development and raise the risk of neurodevelopmental and mental health disorders.
With previous studies finding conflicting results on a possible association between ART and increased risk of mental health disorders, an Indian research team has just published a new meta-analysis exploring this topic.
The Study:
Studies were eligible if they were observational (cohort, case-control, or cross-sectional), reported confounder-adjusted effect sizes for ADHD, and were published in English in peer-reviewed journals.
A meta-analysis of eight studies encompassing nearly twelve million individuals indicated a 7% higher prevalence of ADHD in offspring conceived via IVF/ICSI compared to those conceived naturally. The heterogeneity among studies was minimal, and no evidence of publication bias was observed.
The study’s 95% confidence interval ranged from 4% to 10%. Further analysis of five studies comprising almost nine million participants that distinguished outcomes by sex revealed that the increase in ADHD risk among female offspring was not statistically significant. In contrast, the elevated risk in male offspring persisted, though it was marginally significant, with the lower bound of the confidence limit at only 1%.
Results:
A meta-analysis of three studies (1.4 million participants) found a 13% higher rate of ADHD in children conceived via ovulation induction/intrauterine insemination (OI/IUI) compared to natural conception. The effect size, though doubled, remains small. Minimal heterogeneity and no publication bias were observed.
The team concluded, “The review found a small but statistically significant moderate certainty evidence of an increased risk of ADHD in those conceived through ART, compared to spontaneous conception. The magnitude of observed risk is small and is reassuring for parents and clinicians.”
Our Take-Away:
Overall, the meta-analysis points to a small, but measurable increase in ADHD diagnoses among children conceived through ART, but the effect sizes are modest and supported by moderate-certainty evidence. And we must always keep in mind that the researchers who wrote the original articles could not correct for all possible confounds. These findings suggest that while reproductive technologies may introduce slight variation in neurodevelopmental outcomes, the effects are small and uncertain. For families and clinicians, the results are generally reassuring: ART remains a safe and effective avenue to parenthood, and the results of this study should not be viewed as a prohibitive concern. Thoughtful developmental monitoring and open, evidence-based counseling can help ensure that ART-conceived children receive support that caters to their individual needs.
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. More Info
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info