May 16, 2025

Seven New Meta-analyses Suggest Wide Range of Benefits from Exercise for Persons with ADHD

ADHD is associated with deficits in executive functions. These are mental processes that enable individuals to plan, focus attention, manage tasks, and regulate emotions. These skills encompass working memory, cognitive flexibility, and inhibitory control, which are crucial for goal-directed behavior and decision-making. 

Working memory, which temporarily stores and processes information, contributes to language development by helping individuals make sense of what they read or hear.  

Cognitive flexibility refers to the ability to change perspectives, adapt thinking strategies, adjust to changing needs and priorities, recognize errors, and grasp opportunities.  

Inhibition switching involves intentional control of attention and emotions, suppressing automatic responses when necessary to prevent inappropriate behavior.  

These elements are critical to academic, social, and professional success. 

An international study team (Li et al.) conducted a meta-analysis of randomized controlled trials (RCTs) to explore the efficacy of physical activity for improving executive functions among children with ADHD aged 6 to 12. 

Meta-analysis of eleven RCTs encompassing 388 children reported a medium-to-large effect size improvement in cognitive flexibility. However, it found no benefit from aerobic exercise (such as running, jumping). When limited to the nine studies with 301 children that focused on cognitively engaging exercise (such as soccer and water sports that require constant monitoring of other players and strategizing), it found a large effect size improvement. Correcting for possible publication bias had no effect on the outcome. 

Meta-analysis of nine RCTs totaling 398 children reported a large effect size improvement in working memory. Once again, it found no benefit from aerobic exercise. Focusing on the seven RCTs with 288 children that used cognitively engaging exercise, it found a very large effect size improvement. There was no sign of publication bias. 

Meta-analysis of fourteen RCTs combining 579 children reported a small-to-medium effect size improvement in inhibition switching. But whereas it found a medium effect size improvement for shorter interventions of less than an hour (eight RCTs, 334 children), it found no benefit from interventions lasting an hour or more (six RCTs, 245 children. Again, there was no sign of publication bias. 

The team concluded, “Our study shows that physical activity interventions have a positive effect on improving executive function in school-age children with ADHD, with cognitive-engaging exercises showing greater benefits across three executive function measures.” 

A Chinese study team (Yang et al.) performed a related meta-analysis on the effect of exercise on inhibitory control in adults. Combining eight RCTs with a total of 372 participants, it reported a very large effect size improvement in inhibitory control, primarily from regular exercise. However, the effects were heavily influenced by a couple of outliers. The team claimed to have performed a sensitivity analysis but offered no evidence. Likewise, they noted signs of publication bias but did not use the standard trim-and-fill analysis to correct for it. 

Another Chinese study team (Xiangqin Song et al.) examined the effect of exercise on working memory in children and adolescents.  

Meta-analysis of 17 RCTs encompassing 419 participants found a medium effect size improvement in working memory. The large effect size improvement for cognitive aerobic exercise (4 RCTs, 233 participants) was twice the effect size for simple aerobic exercise (8 RCTs, 397 participants), though this meta-analysis still found a small-to-medium effect size gain from the latter. There was no sign of publication bias.  

The team concluded, “The results indicate that cognitive-aerobic exercise and ball sports are significantly more effective than other types of exercise interventions in improving working memory. This difference may be attributed to the varying cognitive load, task complexity, and the degree of activation of executive functions across different exercise types. The findings suggest that when designing exercise interventions for children with ADHD, priority should be given to exercise types with higher cognitive load in order to more effectively enhance working memory.” 

A joint Australian-U.S. team (Singh et al.) conducted a meta-meta-analysis on the effect of exercise on executive functions, that is, a meta-analysis of previous meta-analyses of RCTs.  

Combining ten separate meta-analyses with well over 2,800 children and adolescents with ADHD, it reported large effect size improvements in executive functions overall. There was no further breakdown by type of executive function and type of physical activity.  

The team concluded, “While exercise was seen to have a moderate and similar positive impact across all populations with respect to general cognition and memory, benefits for executive function were particularly marked in individuals with ADHD. This subgroup was unique in demonstrating a large effect size. This could be attributed to the task selection and the fact that many ADHD studies involved children. While the exact reason for this finding is unclear, there is evidence to suggest that impairments in executive function are common among individuals with ADHD. As such, it is plausible that this population may have a greater capacity for improvement due to starting from a lower baseline, compared with those with ‘normal’ executive function.” 

Another Chinese study team (Yagang Song et al.) performed a meta-analysis of RCTs examining the effects of physical exercise on anxiety, depression, and emotion regulation among children and adolescents with ADHD.  

Meta-analysis of eleven studies with a combined total of 384 participants reported a medium effect size reduction in symptoms of anxiety, with a dose-effect response. Physical exercise once a week had no significant effect, while twice a week was associated with a medium effect size reduction, and three or more times a week with a very large effect size improvement. Moderate intensity exercise was three times more effective than low intensity exercise.  

Meta-analysis of seven studies encompassing 187 individuals similarly reported a medium effect size reduction in symptoms of depression. Once again, moderate intensity was far more effective than low intensity exercise. 

Meta-analysis of seven studies totaling 429 children and adolescents reported a very large effect size improvement in emotion regulation, especially for physical exercise conducted at least twice a week

There was no sign of publication bias in the anxiety, depression, or emotion regulation findings. 

The team concluded, “Physical exercise demonstrated a substantial overall impact on enhancing anxiety, depression, and emotional regulation in children with ADHD, exhibiting a dose-response effect correlated with the period, frequency, duration, and intensity of the exercise. This investigation ... presents an additional evidence-based therapeutic approach for the considerable number of children with ADHD who are not appropriate candidates for pharmacological intervention.” 

A joint U.S.-Hong Kong study team (Liu et al.) performed a meta-analysis exploring the effect of physical exercise on motor proficiency. Motor proficiency includes both gross motor skills (like walking and running) and fine motor skills (like writing and buttoning).  

Meta-analysis of ten studies encompassing 413 children and adolescents with ADHD reported a very large effect size improvement in motor proficiency from physical exercise. The gains for object control, fine manual control, and manual coordination were roughly twice the gains for body coordination. There was no sign of publication bias. 

Finally, a Spanish research team (González-Devesa et al.) conducted a meta-analysis examining the effect of exercise on objectively measured sleep status among persons with ADHD. 

Meta-analysis of three RCTs with a combined total of 131 individuals that used accelerometers to measure sleep duration reported no significant effect one way or the other from exercise

The team concluded, “The existing evidence regarding the use of exercise to manage sleep problems in individuals with ADHD remains inconclusive. Preliminary findings from this review suggest a potential positive effect of exercise on self-reported sleep quality; however, its efficacy in improving sleep duration could not be confirmed.” 

The Take-Away:

An ideal exercise regimen for children with ADHD should focus on cognitively engaging physical activities rather than simple aerobic exercise. Sports and activities that require strategic thinking, attention to others’ actions, and rapid decision-making—such as soccer, martial arts, or water-based team sports—gave the best results, especially for working memory and cognitive flexibility. These types of exercise also show strong benefits for emotional regulation, reducing anxiety and depression, and enhancing motor proficiency.

To maximize benefits, the regimen should include moderate-intensity sessions at least two to three times per week, each lasting less than an hour, as longer durations appear less effective for improving inhibitory control. This structured, cognitively demanding approach offers an evidence-based, non-pharmacologic treatment option for children with ADHD, particularly for those who cannot or prefer not to use medication.  We need, however, more work to determine if exercise will provide the same symptom reduction and protection from adverse outcomes as has been shown for medications.

Daniel González-Devesa, Miguel Adriano Sanchez-Lastra, José Carlos Diz-Gómez, and Carlos Ayán-Pérez, “Effectiveness of Exercise on Sleep Quality in Attention Deficit Hyperactivity Disorder: A Systematic Review and Meta-Analysis,” Children (2025) 12, 119, https://doi.org/10.3390/children12020119

Dong Li, Chuyuan Miao, Deng Wang, and Chenmu Li, “Effect of physical activity interventions on executive functions in school-age children with ADHD: A meta-analysis of randomized controlled trials,” Journal of Affective Disorders (2025), https://doi.org/10.1016/j.jad.2025.01.155

Hok Ling Venus Liu, Fenghua Sun, David I. Anderson, and Choi Yeung Andy Tse, “The Effect of Physical Activity Intervention on Motor Proficiency in Children and Adolescents with ADHD: A Systematic Review and Meta-analysis,” Child Psychiatry & Human Development (2025) 56:177–191, https://doi.org/10.1007/s10578-023-01546-5

Ben Singh, Hunter Bennett, Aaron Miatke, Dorothea Dumuid, Rachel Curtis, Ty Ferguson, Jacinta Brinsley, Kimberley Szeto, Jasmine M Petersen, Claire Gough, Emily Eglitis, Catherine EM Simpson, Christina L Ekegren, Ashleigh E Smith, Kirk I Erickson, and Carol Maher, “Effectiveness of exercise for improving cognition, memory and executive function: a systematic umbrella review and meta-meta-analysis,” British Journal of Sports Medicine (2025) 0:1-11, https://doi.org/10.1136/bjsports-2024-108589

Xiangqin Song, Yaoqi Hou, Wenying Shi, Yan Wang, Feifan Fan, and Liu Hong, “Exploring the impact of different types of exercise on working memory in children with ADHD: a network meta-analysis,” Frontiers in Psychology (2025) 16:1522944, https://doi.org/10.3389/fpsyg.2025.1522944

Yagang Song, Shuqi Jia, Xing Wang, Aiwei Wang, Tao Ma, Shufan Li, Jiwei Che, Zhaohui Guo, Feng Ding, Yuxi Ren, and Man Qin, “Effects of physical exercise on anxiety, depression, and emotion regulation in children with attention deficit hyperactivity disorder: a systematic review and meta-analysis,” Frontiers in Pediatrics (2025) Vol. 12, https://doi.org/10.3389/fped.2024.1479615

Yi Yang, Chang-Hong Wu, Liang Sun, Ting-Ran Zhang, and Jiong Luo, “The impact of physical activity on inhibitory control of adult ADHD: a systematic review and meta-analysis,” Journal of Global Health (2025) Vol. 15, 10.7189/jogh.15.04025

 

Related posts

Immediate and Long-term Effects of Exercise on ADHD Symptoms and Cognition

Immediate and Longer-term Effects of Exercise on ADHD Symptoms and Cognition

A team of Spanish researchers has published a systematic review of 16 studies with a total of 728 participants exploring the effects of physical exercise on children and adolescents with ADHD. Fourteen studies were judged to be of high quality, and two of medium quality.

Seven studies looked at the acute effects of exercise on eight to twelve-year-old youths with ADHD. Acute means that the effects were measured immediately after periods of exercise lasting up to 30 minutes. Five studies used treadmills and two used stationary bicycles, for periods of five to 30 minutes. Three studies "showed a significant increase in the speed of reaction and precision of response after an intervention of 20-30 min, but at moderate intensity (50-75%)." Another study, however, found no improvement in mathematical problem-solving after 25 minutes using a stationary bicycle at low (40-50%) or moderate intensity (65-75%). The three others found improvements in executive functioning, planning, and organization in children after 20- to 30-minute exercise sessions.

Nine studies examined longer-term effects, following regular exercise over many weeks. One reported that twenty consecutive weekly yoga sessions improved attention. Another found that moderate to vigorous physical activity (MVPA) led to improved behavior beginning in the third week, and improved motor, emotional and attentional control, by the end of five weeks. A third study reported that eight weeks of starting the school day with 30 minutes of physical activity led to improvement in Connor's ADHD scores, oppositional scores, and response inhibition. Another study found that twelve weeks of aerobic activity led to declines in bad mood and inattention. Yet another reported that thrice-weekly 45-minute sessions of MVPA over ten weeks improved not only muscle strength and motor skills, but also attention, response inhibition, and information processing.

Two seventy-minute table tennis per week over twelve weeks improved executive functioning and planning, in addition to locomotor and object control skills.

Two studies found a significant increase in brain activity. One involved two hour-long sessions of rowing per week for eight weeks, the other three 90-minute land-based sessions per week for six weeks. Both studies measured higher activation of the right frontal and right temporal lobes in children, and lower theta/alpha ratios in male adolescents.

All 16 studies found positive effects on cognition. Five of the nine longer-term studies found positive effects on behavior. No study found any negative effects. The authors of the review concluded that physical activity "improves executive functions, increases attention, contributes to greater planning capacity and processing speed and working memory, improves the behavior of students with ADHD in the learning context, and consequently improves academic performance." Although the data are limited by a lack of appropriate controls, they suggest that, in addition to the well-known positive effects of physical activity, one may expect to see improvements in ADHD symptoms and associated features, especially for periods of sustained exercise.

July 18, 2021

How Effective Is Exercise in Treating ADHD?

New meta-analysis explores effectiveness of physical exercise as treatment for ADHD

Noting that "Growing evidence shows that moderate physical activity (PA) can improve psychological health through enhancement of neurotransmitter systems," and "PA may play a physiological role similar to stimulant medications by increasing dopamine and norepinephrine neurotransmitters, thereby alleviating the symptoms of ADHD," a Chinese team of researchers performed a comprehensive search of the peer-reviewed journal literature for studies exploring the effects of physical activity on ADHD symptoms.

They found nine before-after studies with a total of 232 participants, and fourteen two-group control studies with a total of 303 participants, that met the criteria for meta-analysis.

The meta-analysis of before-after studies found moderate reductions in inattention and moderate-to-strong reductions in hyperactivity/impulsivity. It also reported moderate reductions in emotional problems and small-to-moderate reductions in behavioral problems.

The effect was even stronger among unmediated participants. There was a very strong reduction in inattention and a strong reduction in hyperactivity/impulsivity.

The meta-analysis of two-group control studies found strong reductions in inattention, but no effect on hyperactivity/impulsivity. It also found no significant effect on emotional and behavioral problems.

There was no sign of publication bias in any of the meta-analyses.

The authors concluded, "Our results suggest that PA intervention could improve ADHD-related symptoms, especially inattention symptoms. However, due to a lot of confounders, such as age, gender, ADHD subtypes, the lack of rigorous double-blinded randomized-control studies, and the inconsistency of the PA program, our results still need to be interpreted with caution."

February 21, 2022

Myths About the Treatment of ADHD

Myths About The Treatment of ADHD

Myth:  ADHD medications "anesthetize" ADHD children.
 
The idea here is that the drug treatment of ADHD is no more than a chemical straightjacket intended to control a child's behavior to be less bothersome to parents and teachers. After all, everyone knows that if you shoot up a person with tranquilizers, they will calm down.

Fact:  ADHD medications are neither anesthetics nor tranquilizers.

The truth of the matter is that most ADHD medications are stimulants. They don't anesthetize the brain; they stimulate it. By speeding up the transmission of dopamine signals in the brain, ADHD medications improve brain functioning, which in turn leads to an increased ability to pay attention and control behavior.  The non-stimulant medications improve signaling by norepinephrine. They also improve the brain's ability to process signals. They are not sedatives or anesthetics. When taking their medication, ADHD patients can focus and control their behavior to be more effective in school, work, and relationships.  They are not "drugged" into submission.

Myth: ADHD medications cause drug and alcohol abuse
We know from many long-term studies of ADHD children that when they reach adolescence and adulthood, they are at high risk for alcohol and drug use disorders. Because of this fact, some media reports have implied that their drug use was caused by treatment of their ADHD with stimulant medications.

Fact: ADHD medications do not cause drug and alcohol abuse
Some ADHD medications indeed use the same chemicals that are found in street drugs, such as amphetamine.  But there is a very big difference between these medications and street drugs. When street drugs are injected or snorted, they can lead to addiction, but when they are taken in pill form as prescribed by a doctor, they do not cause addiction. When my colleagues and I examined the world literature on this topic, we found that rather than causing drug and alcohol abuse, stimulant medicine protected ADHD children from these problems later in life. One study from researchers at Harvard University and the Massachusetts General Hospital found that the drug treatment of ADHD reduced the risk for illicit drug use by84 a percent. These findings make intuitive sense. These medicines reduce the symptoms of the disorder that lead to illicit drug use. For example, an impulsive ADHD teenager who acts without thinking is much more likely to use drugs than an ADHD teen whose symptoms are controlled by medical drug treatment. After we published our study, other work appeared. Some of these studies did not agree that ADHD medications protected ADHD people from drug abuse, but they did not find that they caused drug abuse.

Myth:  Psychological or behavioral therapies should be tried before medication.  
Many people are cautious about taking medications, and that caution is even stronger when parents consider treatment options for their children.  Because medications can have side effects, shouldn't people with ADHD try to talk therapy before taking medicine?

Fact:  Treatment guidelines suggest that medication is the first-line treatment.
The problem with trying talk or behavior therapy before medication is that medication works much better.  For ADHD adults, one type of talk therapy(cognitive behavioral therapy) is recommended, but only when the patient is also taking medication.  The multimodal treatment of ADHD (MTA) study examined this issue in ADHD children from several academic medical centers in the United States. That study found that treating ADHD with medication was better than treating it with behavior therapy. Importantly, behavior therapy plus medication was no more effective than medication alone. That is why treatment guidelines from the American Academy of Pediatrics and the American Academy of Children and Adolescents recommend medicine as a first-line treatment for ADHD, except for preschool children. ADHD medications indeed have side effects, but these are usually mild and typically do not interfere with treatment.  And don't forget about the risks that a patient faces when they do not use medications for ADHD.  These untreated patients are at risk for worsening ADHD symptoms and complications.

Myth: Brain abnormalities of ADHD patients are caused by psychiatric medications
A large scientific literature shows that ADHD people have subtle problems with the structure and function of their brains.  Scientists believe that these problems are the cause of ADHD symptoms. Critics of ADHD claim that these brain problems are caused by the medications used to treat ADHD.  Who is right?

Fact: Brain abnormalities are found in never medicated ADHD patients.
Alan Zametkin, a scientist at the US National Institute of Mental Health, was the first to show brain abnormalities in ADHD patients who had never been treated for their ADHD.  He found that some parts of the brains of ADHD patients were underactive. His findings could not be due to medication because the patients had never been medicated. Since his study, many other researchers have used neuroimaging to examine the brains of ADHD patients. This work confirmed Dr. Zametkin’s observation of abnormal brain findings in unmediated patients. Reviews of the brain imaging literature have concluded that the brain abnormalities seen in ADHD cannot be attributed to ADHD medications.

May 15, 2021

Beyond Dopamine: How Serotonin Influences ADHD Symptoms

ADHD is usually framed as a dopamine-and-norepinephrine condition, but recent studies have revealed that serotonin may also play a significant role. To delve deeper into this, we conducted a systematic literature review of studies looking at serotonin, its receptors, and the serotonin transporter (SERT) in relation to ADHD. The result: serotonin appears to be an important piece of the puzzle, but the overall picture is quite complex.

An ADHD & Serotonin Literature Review:

The authors searched the literature without time limits and screened thousands of records to end up with 95 relevant publications. Those included animal/basic-science work, neuroimaging, pharmacodynamics, a couple of large genetic/transcriptomic studies (GWAS and a cortico-striatal TWAS), and a few clinical reports. Each paper was graded for quality: 17 high, 59 medium, and 19 low.

The Results:
  • Most studies support a serotonergic role. About 81% (77/95) of the papers reported altered serotonin production, binding, transport, or degradation linked to ADHD or ADHD-like behaviors.

  • Multiple lines of evidence: animal models frequently show that changing serotonin levels or receptor activity alters hyperactivity and impulsivity; human imaging and clinical studies provide supportive but smaller and sometimes mixed signals; genetic/transcriptomic work points to serotonin-related pathways among many implicated systems.

  • Receptors and SERT matter: Multiple serotonin receptor subtypes (5-HT1A, 1B, 2A, 2C, 7) and SERT show associations with impulsivity, hyperactivity, attention, or brain activity patterns in ADHD models and some human studies.

  • Mixed and conflicting data: Central measures (brain, CSF) more often show serotonin deficits, while peripheral measures (platelets, plasma) sometimes show higher serotonin — methodological differences likely explain some contradictions.

  • Drugs used for ADHD can affect serotonin: Stimulants and non-stimulant drugs approved by FDA for treating ADHD (e.g., methylphenidate, atomoxetine, extended release viloxazine) or under investigation (centafafadine) have direct or indirect effects on serotonin systems, supporting the idea that monoamines interact rather than acting separately.  Because drugs that mainly affect serotonin are not useful for ADHD it seems likely that a pathway forward for ADHD drug development would be drugs that target multiple neurotransmitter systems.  A complex treatment for an etiologically complex disorder.

The Role of Serotonin in ADHD: What's The Take-Away?

As the study points out, the idea that serotonin may play a role in the neurobiology of ADHD is not new, but this literature review “identified multiple individual strands of evidence gathered over several decades and brought them into a more coherent focus”. It concludes that serotonergic neurotransmission is implicated in ADHD.  This doesn’t mean variations in serotonin levels cause ADHD, but that serotonin may be a plausible target for future treatments and research.

ADHD is polygenic and multi-systemic. For now, clinicians and patients should view serotonin as part of a complex network that may contribute to ADHD symptoms.  More research is needed before making treatment decisions based on these findings. 

Registry-based Cohort Study Finds No Association Between Maternal Diabetes and Offspring ADHD

Background:

A previous meta-analysis found that children born to mothers with diabetes had a 34% higher risk of developing ADHD compared to those born to non-diabetic mothers.  

However, previous studies suffered methodological limitations, such as small sample sizes, case-control or cross-sectional designs, and insufficient adjustment for key confounders such as maternal socio-economic status, mental health conditions, obesity, and substance use disorders.  

Moreover, many studies relied on self-reported maternal diabetes, and on non-clinical ADHD assessments, such as parental reports or screening tools, which are prone to bias and inaccuracies.  

Furthermore, the role of maternal antidiabetic medication use in relation to ADHD risk has rarely been examined. Antidiabetic medications are effective in controlling high blood sugar during pregnancy, but many can cross the placenta and the blood-brain barrier, raising concerns about potential effects on fetal brain development.  

Study:

To address these gaps, an Australian study team used a large cohort of linked health administrative data from New South Wales to investigate both the association between maternal diabetes and the risk of ADHD and the independent effect of prenatal exposure to antidiabetic medications. 

The study encompassed all mother-child pairs born from 2003 through 2005, with follow-up conducted through 2018 to monitor hospital admissions related to ADHD. That yielded a final cohort of almost 230,000 mother-child pairs. 

The team adjusted for potential confounders including maternal age, socioeconomic status, previous children, pregnancy-related hypertension, caesarean delivery, birth order and plurality, maternal anxiety, depression, schizophrenia, bipolar disorder, substance use (alcohol, tobacco, stimulants, opioids, cannabis), and child factors such as Apgar score, sex, prematurity, and low birth weight. 

Results:

For maternal diabetes overall, there was no significant association with offspring ADHD. That was also true when broken down into pre-existing maternal diabetes and gestational (pregnancy-induced) diabetes.  

In a subset of 11,668 mother-child pairs, including 3,210 involving exposure to antidiabetic medications, there was likewise no significant association with offspring ADHD

Conclusion:

The team concluded, “Our findings did not support the hypothesis that maternal diabetes increases the risk of ADHD in children. Additionally, maternal use of antidiabetic medication was not associated with ADHD.” 

This study highlights the importance of high-quality research. A previous meta-analysis linking ADHD and maternal diabetes did not appropriately adjust for confounders and cited many small studies that may have included biased self-report scales. This large, registry-based cohort study of nearly 230,000 mother–child pairs found no evidence that maternal diabetes—whether pre-existing or gestational—or prenatal exposure to antidiabetic medications was associated with subsequent offspring ADHD as measured by hospital-recorded ADHD outcomes. The study’s strengths include its population scale, prolonged follow-up, and extensive adjustment for maternal and perinatal confounders (including maternal mental health and substance-use disorders), which address many limitations of earlier, smaller studies that reported elevated risks.  

September 8, 2025

Population Study Finds Association Between COVID-19 Infection and ADHD

Background: 

The COVID-19 pandemic brought environmental changes that may have influenced ADHD symptoms and contributed to higher diagnosis rates. School closures, the transition to remote learning, and restrictions on outdoor activities led to increased screen time and isolation, both of which can affect attention and behavioral regulation. Children and adolescents, who usually depend on social interactions and structured routines, experienced significant disruptions during this period.  

Method:

South Korea has a nationwide single-payer health insurance system that keeps detailed health records on virtually its entire population. To explore the impact of COVID-19 on ADHD, a Korean research team used a database established by the Korean government that tracked all patients with COVID-19 between 2020 and 2023, nationwide COVID vaccination records, and insurance claims. They included all participants aged 6 through 29 years old. 

The onset of ADHD was determined by diagnosis combined with the prescription of ADHD medication. 

Altogether, the study encompassed almost 1.2 million Koreans, including over 150,000 children (6-12), more than 220,000 adolescents (13-19), and almost 800,000 young adults (20-29). 

The team adjusted for age, sex, income, Charlson Comorbidity Index, and medical visits. The Charlson Comorbidity Index predicts the mortality for a patient who may have a range of 17 concurrent conditions, such as heart disease, AIDS, or cancer. 

Results:

With these adjustments, young adults known to be infected with COVID-19 were about 40% more likely to be subsequently diagnosed with ADHD than their counterparts with no record of such infection

Adolescents known to be infected with COVID-19 were about twice as likely to be subsequently diagnosed with ADHD than their counterparts with no record of such infection. 

Children known to be infected with COVID-19 were 2.4 times as likely to be subsequently diagnosed with ADHD than their counterparts with no record of such infection

All these results were highly significant, and point to much greater impact on the youngest persons infected. 

Interpretation: 

The team concluded, “our nationwide study revealed that the COVID-19 pandemic significantly influenced ADHD incidence (raising incidence between 2020 and 2023), with SARS-CoV-2 infection identified as a critical risk factor,” and “In particular, early intervention and neurological evaluations are needed for children, adolescents, and young adults with a history of SARS-CoV-2 infection.”