ADHD (Attention-Deficit/Hyperactivity Disorder) has often been seen as a condition that mainly affects boys, especially when it comes to hyperactivity. However, a new study challenges this idea by showing that hyperactivity is also common in women with ADHD, pointing out the need for better diagnoses.
The study included 13,179 adults with ADHD and 1,910 adults without it. Researchers measured how active participants were using a special test, looking at both "provoked" activity (activity triggered by specific tasks that puts the brain “online”) and "basal" activity (resting or natural activity levels when the brain is “offline”). The study included almost an equal number of men and women, with the goal of finding out if there were any differences between the sexes in ADHD diagnosis, particularly in hyperactivity.
The results were eye-opening. Although men generally showed higher levels of activity when the brain was online, both men and women with ADHD had much higher levels of both offline and online activity compared to people without ADHD. Specifically, those with ADHD had about twice the resting activity and three times the provoked activity compared to those without the disorder.
A key finding was that women with ADHD had hyperactivity levels similar to men with ADHD. This goes against the common belief that women with ADHD don’t show hyperactivity or show it less. It suggests that hyperactivity in women may be missed or misunderstood due to societal expectations or differences in behavior.
These findings have big implications. They suggest that the way we currently understand ADHD, especially hyperactivity in women, might be wrong. By recognizing that women with ADHD can have significant hyperactivity, doctors can diagnose ADHD more accurately. This could lead to earlier treatment and better management of ADHD in women, which might also lower the chances of related problems like anxiety or depression.
The study highlights the importance of thinking about gender differences when diagnosing and treating ADHD. By realizing that hyperactivity isn't just a "male" trait, we can better support everyone with ADHD and ensure they get the right care. As research on ADHD continues, it’s important to challenge old assumptions and take a more inclusive approach to understanding and treating the disorder.
ADHD patients may substantially improve executive functions through persistent and protracted physical exercise.
Executive function(EF) is associated with the prefrontal cortex. It includes three core components: inhibitory control, cognitive flexibility, and working memory. Inhibitory control is the ability to avoid distractions, inhibit or control impulsive responses, and change to more thoughtful responses. Cognitive flexibility involves switching mental tasks or strategies, seeing problems from multiple perspectives, and identifying different ways of solving them. Working memory involves holding information in the mind ready for an ongoing processing.
Persons with neurodevelopmental disorders, including ADHD, are known to have EF deficits relative to their normally-developing counterparts.
An international research team conducted a comprehensive search of the peer-reviewed medical literature to identify studies that have explored how physical activity affects those deficits in persons with neurodevelopmental disorders, specifically ADHD.
They identified 34 studies with 1,058 participants, of which 13 with 400 looked specifically at ADHD. There was substantial geographic diversity in the ADHD studies, spanning the globe: the United States, Canada, Switzerland, Taiwan, South Korea, Iran, Israel, and Tunisia.
Among the ADHD studies, a meta-analysis found physical activity improved executive functions overall, with a large effect size. More specifically, it included twelve tests of inhibitory control, four for working memory, three for cognitive flexibility, and one each for switching and planning (there was often more than one tester in the study).
There was no sign of publication bias. There was, however, substantial heterogeneity between studies. A further breakdown indicated substantial divergence by type of physical activity, with a large effect size for sports, medium effect sizes for aerobic exercise and motor skills training, and small effect size for exergaming (video games that are also a form of exercise).
Session time also made a big difference. Sessions at least an hour long had large effect sizes, those between 45 minutes and an hour had medium effect sizes, and shorter sessions had smaller effect sizes.
Improvements in inhibitory control had large effect sizes, those in cognitive flexibility had medium-to-large effect sizes, and those in working memory had small-to-medium effect sizes. All of which suggest ADHD patients can substantially improve executive functions through persistent and protracted physical exercise.
Two recent meta-analyses, one by an Asian team, and the other by a European team, have reported encouraging results on the efficacy of physical exercise in treating ADHD among children and adolescents.
One, a Hong Kong-based team (Liang et al. 2021) looked at the effect of exercise on executive functioning.
The team identified fifteen studies with a combined total, of 493 participants that met the criteria for inclusion. As the authors noted, "only a few studies successfully blinded participants and therapists, due to the challenges associated with executing double-blind procedures in non-pharmacological studies."
After adjusting for publication bias, the meta-analysis of the fifteen studies found a large improvement in overall executive functioning.
The studies varied in which aspects of executive functioning were addressed. A meta-analysis of a subset of eleven studies encompassing 406 participants found a large improvement in inhibitory control. A meta-analysis of another subset, of eight studies with a total of 311 participants, found a large improvement in cognitive flexibility. Finally, a meta-analysis of a subset of five studies encompassing 198 participants found a small-to-medium improvement in working memory.
Nine studies involved acute (singular) exercise interventions lasting 5 to 30 minutes, while twelve studies involved chronic (regular) exercise interventions ranging from 6 to 12 weeks, with a total duration of 12 to 75 hours. The chronic exercise was more than twice as effective as acute exercise. The former resulted in large improvements in overall executive functioning, the latter in small-to-medium improvements.
No significant differences were found between aerobic exercises (such as running and swimming) and cognitively engaging exercises(such as table tennis and other ball games, and exergaming ... video games that are also a form of exercise, relying on technology that tracks body movements).
The authors concluded that "Chronic sessions of exercise interventions with moderate intensity should be incorporated as a treatment for children with ADHD to promote executive functions."
Meanwhile, a German study team (Seiffer et al. 2021) looked at the effects of regular, moderate-to-vigorous physical activity on ADHD symptoms in children and adolescents.
They found eleven studies meeting their criteria, with a combined total of 448 participants. A meta-analysis of all eleven studies found a small-to-moderate decline in ADHD symptoms. However, the three studies with blinded outcome assessors found a large and statistically highly significant decline in symptoms, whereas the eight studies with blinded outcome evaluators found only a small decline that was not statistically significant.
When compared with active controls using pharmacotherapy in a subgroup of two studies with 146 participants, pharmacotherapy held a small-to-moderate advantage that fell just short of statistical significance, most likely because of the relatively small sample size.
The authors concluded that moderate to vigorous physical activity (MVPA) "could serve as an alternative treatment for ADHD," but that additional randomized controlled trials "are necessary to increase the understanding of the effect regarding frequency, intensity, type of MVPA interventions, and differential effects on age groups."
Previous population studies have shown that children with ADHD have a much higher risk of traumatic injuries than their normally developing peers, and that such risk can be greatly reduced with methylphenidate treatment.
But what about the parents of children with ADHD? How does their risk compare with that of parents of normally developing children?
Taiwan has a single-payer public health insurance system that maintains comprehensive healthcare records of virtually every resident.
A Taiwanese research team availed itself of the Taiwan Maternal and Child Health Database, which covers 99.8% of all births, to identify 81,401 fathers and 87,549 mothers who had at least one offspring with ADHD and 1,646,100 fathers and 1,730,941 mothers with no offspring with ADHD.
The team determined children's ADHD status based on either an inpatient diagnosis or four or more diagnoses.
It looked for parental traumatic injuries including burn injury, fracture, and traumatic brain injury.
To address covariates, it adjusted for age, urbanicity, low-income level, and competing risk of death.
Adjusted for those covariates, parents of children with ADHD were 20% more likely to suffer bone fractures, 27% more likely to have traumatic brain injuries, and 30% more likely to have burn injuries requiring medical treatment than parents of normally developing children.
The elevated risks were significant across the board, but roughly twice as much s for mothers as for fathers of children with ADHD - up 30% vs 15% for bone fractures, up 35% vs 23% for burn injuries, and up 45% vs 21% for traumatic brain injuries.
The authors noted that ADHD is highly heritable and that the findings may in part point to undiagnosed adult ADHD.
Another contributing factor, they suggested, is that "studies have revealed that a high proportion of parents having children with ADHD experience depression and anxiety. Stress-related negative emotions (depression and anxiety) were shown to cause loss of concentration, thereby increasing the likelihood of accidental events such as traffic accidents and contributing to the increased risks of traumatic injury among parents of children ADHD."
The much-higher elevated risk for mothers seems to support this hypothesis, because mothers continue to be the principal caregivers in Taiwan, and are thus more exposed to the behaviors of their children. The authors cited a study indicating that "diagnosis of ADHD for children was reported to be a predictor of increased caregiver burden."
They concluded, "Given that knowledge is fundamental to act, it is essential to educate the parents of children with ADHD on the increased risk of traumatic injuries they may have. ... The need for behavioral and pharmacological intervention in parents of children with ADHD should be evaluated, especially in the parents with undiagnosed ADHD or sub-threshold ADHD symptoms. It deserves further prospective studies with longer follow-up periods to explore whether undiagnosed ADHD, care burden of parents, and children's aggressive behaviors contribute to the increased risks of traumatic injuries in parents of children with ADHD."
Youths with ADHD are at higher risk of suicide, burn injuries, road injuries, and more generally all-cause mortality than normally developing children. Methylphenidate (MPH) is known to be effective in reducing ADHD symptoms. Can it also reduce the risk of all-cause mortality? A team of Taiwanese researchers, collaborating with two British researchers, explored that question by looking at a nationwide population cohort.
Taiwan has a single-payer national health insurance system that includes the entire population (99.6 percent coverage). Using the National Health Insurance Research Database (NHIRD), the team identified over 183,000 youths under 18 with an ADHD diagnosis. Of these, just over 68,000 had been prescribed to MPH. The team matched them with an equal number of ADHD youths who were not prescribed MPH. All records were anonymized and checked against the National Mortality Register.
All-cause mortality was split into two subcategories. Unnatural-cause mortality consisted of homicide, suicide, and motor vehicle fatalities. Natural-cause mortality encompassed all other premature deaths. In the raw data, ADHD youths on MPH had half the all-cause mortality of those not on MPH. Natural-cause mortality was down about 40 percent and unnatural-cause mortality was by almost two-thirds. In the non-MPH group, 32 committed suicide in the follow-up year, versus only a single individual in the MPH group. There were seven homicide victims in the non-MPH group, versus none at all in the MPH group.
These staggering reductions, however, were almost exclusively among males. The team then adjusted for potential confounding variables - gender, age, residence, insurance premium, out-patient visits, and pre-existing diagnoses. In the adjusted model, the risk for all-cause mortality was still reduced - by about 20 percent - for those on MPH and remained statistically significant. Virtually identical reductions were found for males and for children first diagnosed with ADHD between 4 and 7 years old. But all other risk estimates became statistically non-significant, due in large measure to the rarity of mortality events.
The authors concluded, "This is the first study reporting that a longer interval between first ADHD diagnosis and first prescription of MPH is associated with a higher risk of all-cause mortality. In addition, we also found that participants receiving longer-duration MPH treatment had a lower risk of all-cause mortality. ... an implication is that receiving a diagnosis earlier and receiving medication earlier may reduce the risk of later adverse consequences."
They nevertheless cautioned, "although we adjusted for multiple covariant, information lacking in the database precluded the measurement of other possible confounders, such as family history, psychosocial stressors, the effect of behavioral therapy or severity of comorbidities. Therefore, as with all observational data, it is not possible to be conclusive about whether the association with lower mortality is related to an effect of MPH treatment itself or whether other characteristics of the children receiving MPH may account for the lower risk (i.e. confounding by indication).
Finally, although the cohort sizes were large, the number of deaths was small, and this limited statistical power, particularly for the investigation of cause-specific mortality and of subgroup differences. Because of the relatively low number of deaths and limited follow-up duration, longer-term studies with larger samples are warranted ..."
An international team of mental health professionals used a nationally representative sample of English adults over age 16 to explore this question. Of 13,671 households selected, 7,461 were a little more than half participated.
Participants used the Adult ADHD Self-Report Scale (ASRS) Screener to assess symptoms of ADHD on a scale ranging from 0 to 24. Those scoring ≥ 14 were considered as having high levels of ADHD symptoms. They also responded to a computer-assisted self-interview that asked, "Have you been unfairly treated in the last 12 months … because of your mental health," requiring a yes or no answer.
The raw data showed an exponential relationship between levels of ADHD symptoms and mental health discrimination. Respondents scoring0-9 on the ASRS reported negligible discrimination (prevalence of 0.3%). Among those scoring 10-13, the prevalence was 2.3%, rising to 5.5% of those with scores in the 14-17 range, and 18.8% among those in the 18-24 range.
After adjusting for sociodemographic variables (sex, age, ethnicity, marital status, educational attainment, and income), those with high levels of ADHD symptoms were nearly 10 times more likely to have experienced discrimination than others. After adjusting for other psychopathology and stressful life events, this increased risk fell to 2.8.
The authors concluded, "This is an important finding given that mental health discrimination has been associated with detrimental consequences in individuals with mental health disorders and therefore might also be a factor in the negative outcomes that have been noted in adults with ADHD/ADHD symptomatology. As ADHD continues to be underdiagnosed and untreated in adults, the results of this study highlight the importance of identifying and treating these individuals and suggest that interventions to inform the public about ADHD may be important for reducing the stigma and discrimination associated with this condition."
In this study, researchers found subtle differences in the cortex of the brains of children with ADHD.
The ENIGMA-ADHD Working Group published a second large study on the brains of people with ADHD in the American Journal of Psychiatry this month. In this second study, the focus was on the cerebral cortex, which is the outer layer of the brain.
ADHD symptoms include inattention and/or hyperactivity and acting impulsively. The disorder affects more than one in twenty (5.3%) children, and two-thirds of those diagnosed continue to experience symptoms as adults.
In this study, researchers found subtle differences in the brain's cortex when they combined brain imaging data on almost 4,000 participants from 37 research groups worldwide. The differences were only significant for children and did not hold for adolescents or adults. The childhood effects were most prominent and widespread for the surface area of the cortex. More focal changes were found in the thickness of the cortex. All differences were subtle and detected only at a group level, and thus these brain images cannot be used to diagnose ADHD or guide its treatment.
These subtle differences in the brain's cortex were not limited to people with the clinical diagnosis of ADHD: they were also present - in a less marked form - in youth with some ADHD symptoms. This second finding results from a collaboration between the ENIGMA-ADHD Working Group and the Generation Study from Rotterdam, which has brain images of, 2700 children aged 9-11 years from the general population. The researchers found more symptoms of inattention to be associated with a decrease in cortical surface area. Furthermore, siblings of those with ADHD showed changes to their cortical surface area that resembled their affected sibling. This suggests that familial factors such as genetics or shared environment may play a role in brain cortical characteristics.
This is the largest study to date to look at the cortex of people with ADHD. It included 2246 people with a diagnosis of ADHD and 1713 people without, aged between 4 and 63 years old. This is the second study published by the ENIGMA-ADHD Working Group; the first examined structures that are deep in the brain. The ADHD Working Group is one of over 50 working groups of the ENIGMA Consortium, in which international researchers pull together to understand the brain alterations associated with different disorders and the role of genetic and environmental factors in those alterations.
The authors say the findings could help improve understanding of the disorder. 'We identify cortical differences that are consistently associated with ADHD, by combining data from many research groups internationally. We find that the differences extend beyond narrowly-defined clinical diagnoses and are seen, in a less marked manner, in those with some ADHD symptoms and unaffected siblings of people with ADHD. This finding supports the idea that the symptoms underlying ADHD may be a continuous trait in the population, which has already been reported by other behavioral and genetic studies.'. In the future, the ADHD Working Group hopes to look at additional key features in the brain - such as the structural connections between brain areas - and to increase the representation of adults affected by ADHD, on whom limited research has been performed to date.
A systematic review found five studies that evaluated shared care models involving children and adolescents, in which primary care providers(PCPs) collaborated with mental health care providers in treating ADHD. The 655 participants ranged in age from 5 to 17. Two of the studies were randomized.
In one, the largest, with 321 participants, care managers acted as liaisons between PCPs and psychiatrists and provided psychoeducation and skills training for families. Effect sizes on the Vanderbilt ADHD Diagnostic Teacher Rating Scale were very small, ranging from a standardized mean difference (SMDs) of 0.07 to 0.12. Improvement on the Clinical Global Impression scale was also small (SMD = 0.3)and was not significant (p = 0.4).
In the other randomized study, with 63 participants, care managers also acted as liaisons between PCPs and a psychiatric decision support panel to provide Positive Parenting Training. The SNAP-IV hyperactivity/impulsivity score showed a medium effect size (SMD = 0.7), with a medium-to-large effect size (0.7) for improvement in social skills. The score difference for SNAP-IV inattention was not statistically significant. The other three studies followed groups of individuals over time.
In one cohort with 129 participants, PSPs consulted with psychiatrists by telephone; an evaluation, where necessary, was performed within 4 weeks. As assessed by the Clinical Global Impression-Severity scale, symptoms declined from moderately severe to mild or borderline. On the Children's Global Assessment Scale, there was an improvement from problems in more than one area of functioning to just one area.
In another cohort with 116 participants, care managers acted as liaisons between pediatricians and a psychiatrist and provided education to parents. Just over a quarter of participants showed improvement of greater than one standard deviation on the Vanderbilt ADHD Diagnostic Parent Rating Scale, and just under one in seven on the Vanderbilt ADHD Diagnostic Teacher Rating Scale.
The remaining cohort had only 26 participants. It offered PCPs access to outpatient psychiatric consultations within three weeks. PCPs reported a high level of satisfaction with their improved skills in mental health care. There was no evaluation of the effect on symptoms.
With varied study designs, methodologies, and outcomes, the authors of the review could only conclude "that PCP collaboration with psychiatrists may be associated with the increased comfort level. However, the association with symptom outcome and increased capacity was variable." Given that randomized studies report only small effects, these shared care models cannot be routinely recommended.
A team of Spanish researchers has published a systematic review of 16 studies with a total of 728 participants exploring the effects of physical exercise on children and adolescents with ADHD. Fourteen studies were judged to be of high quality, and two of medium quality.
Seven studies looked at the acute effects of exercise on eight to twelve-year-old youths with ADHD. Acute means that the effects were measured immediately after periods of exercise lasting up to 30 minutes. Five studies used treadmills and two used stationary bicycles, for periods of five to 30 minutes. Three studies "showed a significant increase in the speed of reaction and precision of response after an intervention of 20-30 min, but at moderate intensity (50-75%)." Another study, however, found no improvement in mathematical problem-solving after 25 minutes using a stationary bicycle at low (40-50%) or moderate intensity (65-75%). The three others found improvements in executive functioning, planning, and organization in children after 20- to 30-minute exercise sessions.
Nine studies examined longer-term effects, following regular exercise over many weeks. One reported that twenty consecutive weekly yoga sessions improved attention. Another found that moderate to vigorous physical activity (MVPA) led to improved behavior beginning in the third week, and improved motor, emotional and attentional control, by the end of five weeks. A third study reported that eight weeks of starting the school day with 30 minutes of physical activity led to improvement in Connor's ADHD scores, oppositional scores, and response inhibition. Another study found that twelve weeks of aerobic activity led to declines in bad mood and inattention. Yet another reported that thrice-weekly 45-minute sessions of MVPA over ten weeks improved not only muscle strength and motor skills, but also attention, response inhibition, and information processing.
Two seventy-minute table tennis per week over twelve weeks improved executive functioning and planning, in addition to locomotor and object control skills.
Two studies found a significant increase in brain activity. One involved two hour-long sessions of rowing per week for eight weeks, the other three 90-minute land-based sessions per week for six weeks. Both studies measured higher activation of the right frontal and right temporal lobes in children, and lower theta/alpha ratios in male adolescents.
All 16 studies found positive effects on cognition. Five of the nine longer-term studies found positive effects on behavior. No study found any negative effects. The authors of the review concluded that physical activity "improves executive functions, increases attention, contributes to greater planning capacity and processing speed and working memory, improves the behavior of students with ADHD in the learning context, and consequently improves academic performance." Although the data are limited by a lack of appropriate controls, they suggest that, in addition to the well-known positive effects of physical activity, one may expect to see improvements in ADHD symptoms and associated features, especially for periods of sustained exercise.
An international team of researchers recently published a meta-analysis of randomized controlled trials examining the efficacy of meditation-based therapies. Thirteen randomized controlled clinical trials(RCTs) were included: seven, with 270 participants, focused on children and adolescents; the other six, with 339 participants, were on adults. Because only one of the RCTs was appropriately blinded, the results discussed below, although promising, must be considered preliminary.
Among children and adolescents, the meta-analysis revealed a significant, medium effect size (SMD = -0.44, 95% CI -0.69 to -0.19)on ADHD symptoms for meditation therapy versus no treatment. There were virtually no heterogeneity among studies and no sign of publication bias. Improvements in inattention and hyperactivity/impulsivity had similar effect sizes. Neuropsychological measures of inhibition and attention indicated small-to-medium effect sizes but failed to achieve statistical significance, perhaps due to the small numbers of trials and participants (159 and 179, respectively).
For adults, the significant effect size on ADHD symptoms was medium-to-large (SMD = -.66, 95% CI -1.21 to -0.11). Once again, there was little sign of publication bias. But in this case, there was great heterogeneity among the studies. Improvements in inattention and hyperactivity/impulsivity were again comparable, although they fell just short of statistical significance for the latter. Neuropsychological measures of the efficacy of medication therapy produced statistically significant medium effect sizes for inhibition (SMD = -0.54) and working memory (SMD = - 0.42), with virtually no heterogeneity or sign of publication bias.
Although these results are promising, the authors of the meta-analysis concluded, "Despite statistically significant effects on ADHD combined core symptoms, due to paucity of RCTs, heterogeneity across studies, and lack of studies at low risk of bias, there is insufficient methodologically sound evidence to support meditation-based therapies for ADHD."
A team of U.S. endocrinologists recently published the results of a meta-analysis examining a possible association between bisphenol A(BPA) and childhood ADHD. BPA is used in a variety of consumer products, including plastic bottles for food and drink, epoxy resins used to line cans of food, dental sealants, and the thermal receipts issued by stores.
A review of the literature found 29 rodent studies, but only three with humans. The human studies were too different from each other to be suitable for meta-analysis. One found no association between prenatal exposure and ADHD. A second found prenatal BPA exposure to be associated with teacher-reported hyperactivity in 4-year-old boys, but not girls. The third found is to be associated with hyperactivity scores in 3-year-old girls.
As the authors note, "Often, there is little human data available, particularly in the environmental toxicology/health fields, due to the time and expense of conducting epidemiological studies and the ethical barriers for human-controlled trials that involve human exposure to potentially hazardous chemicals. Thus, it is important to have methods for using animal data to inform human health hazard conclusions; indeed, animal models are traditionally used to study human health."
Twelve of the mice and rat studies, with a total of 709 rodents, were suitable for meta-analysis.
Overall these pointed to a tiny SMD effect size of 0.09, but it was not significant, with the odds of such a result being obtained by chance being almost one in four (p = 0.237). But when results from the 356 males and353 females were looked at separately, a significant sex difference emerged. There was essentially no effect on female rodents, with an effect size of -0.07and a 95% confidence interval of -0.27 to 0.14, widely spanning the zero mark, rendering the result statistically non-significant. Among male rodents, however, there was a small but statistically significant effect size (0.24), with a 95%confidence interval from 0.04 to 0.45. The odds of obtaining this outcome by chance were only one in 50 (p = .02).
This result must be viewed with caution, as rodent physiology often differs substantially from that of humans. The authors, therefore, conclude, "early BPA exposure is associated with a presumed hazard of hyperactivity in humans. Our conclusion is based on 'moderate' levels of evidence for the human and 'high' levels of evidence for animal literature."
Several meta-analyses have assessed this question by computing the standardized mean difference or SMD statistic. The SMD is a measure that allows us to compare different studies. For context, the effect of stimulant medication for treating ADHD is about 0.9. SMDs less than 0.3 are considered low, between 0.3 to 0.6 medium, and anything greater than high.
A 2004 meta-analysis by Schab and Trinh combined the results of fifteen studies with a total of 219 participants and found a small association(SMD = .28, 95% CI .08-.49) between consumption of artificial food colors by children and increased hyperactivity. Excluding the smallest and lowest quality studies further reduced the SMD to .21, and a lower confidence limit of .007 also made it barely statistically significant. Publication bias was indicated by an asymmetric funnel plot. No effort was made to correct the bias.
A 2012 meta-analysis by Nigg et al. combined twenty studies with a total of 794 participants and again found a small effect size (SMD =.18, 95% CI .08-.29). It likewise found evidence of publication bias. Correcting for the bias led to a tiny effect size at the outer margin of statistical significance (SMD = .12, 95% CI .01-.23). Restricting the pool to eleven high-quality studies with 619 participants led to a similarly tiny effect size that fell just outside the 95% confidence interval (SMD = .13, CI =0-.25, p = .053). The authors concluded, "Overall, a mixed conclusion must be drawn. Although the evidence is too weak to justify action recommendations absent a strong precautionary stance, it is too substantial to dismiss."
In 2013 a European ADHD Guidelines Group consisting of 21 researchers (Sonuga-Barke et al.) performed a meta-analysis of eight studies involving 294 participants that examined the efficacy of excluding artificial colors from the diets of children and adolescents as a treatment for ADHD. It found a small-to-medium effect size (SMD = .32, 95% CI .06-.58), with less than one in fifty probability that such a result would occur by chance. Yet "Restricting the probably blinded assessment analysis to the four no/low medication trials reduced the standardized mean difference (0.32) to non-significant levels (95%CI=-0.13, 0.77)."
On balance, the research to date suggests a small effect of artificial food colors in aggravating symptoms of hyperactivity in children, and a small beneficial effect of excluding these substances from the diets of children and adolescents, but the evidence is not very robust. More studies with greater numbers of participants, and better control for the effects of ADHD medications, will be required for a more definitive finding.
In the meantime, given that artificial food colors are not an essential part of the diet, parents should consider excluding them from their children's meals, since doing so is risk-free, and the cost (reading labels) negligible.
I recently came across a paper from Tom Brown that adds to the growing scientific literature about smart people with ADHD. Dr. Brown's study measured executive functions in 157 ADHD adults with an intelligence quotient (IQ) in the top 9 percent of the population. The executive functions of the brain regulate cognitive processes in a manner that allows for the effective planning and execution of behaviors.
We know from many studies that both children and ADHD have deficits in executive functions, which impair their ability to manage time and keep themselves organized. Dr. Brown extends that literature by showing that three out of four ADHD adults with high IQ scores were significantly impaired on tests of executive functioning. They had problems in many areas: working memory, processing speed, and auditory-verbal working memory relative.
The lesson from this literature is clear. Smart people can have ADHD. Their high IQs will help them do better than the average person with ADHD, but they may not achieve their potential without appropriate diagnosis and treatment.
For more evidence-based info about adult ADHD, go to www.adhdinadults.com.
Many myths have been manufactured about attention deficit hyperactivity disorder (ADHD). Facts that are clear and compelling to most scientists and doctors have been distorted or discarded from popular media discussions of the disorder. Sometimes, the popular media seems motivated by the maxim "Never let the facts get in the way of a good story." That's fine for storytellers, but it is not acceptable for serious and useful discussions about ADHD.
Myths about ADHD are easy to find. These myths have confused patients and parents and undermined the ability of professionals to appropriately treat the disorder. When patients or parents get the idea that the diagnosis of ADHD is a subjective invention of doctors, or that ADHD medications cause drug abuse, that makes it less likely they will seek treatment and will increase their chances of having adverse outcomes.
Fortunately, as John Adams famously said of the Boston Massacre, "Facts are stubborn things." And science is a stubborn enterprise; it does not tolerate shoddy research or opinions not supported by fact. ADHD scientists have addressed many of the myths about the disorder in the International Consensus Statement on ADHD, a published summary of scientific facts about ADHD endorsed by 75 international ADHD scientists in2002. The statement describes evidence for the validity of ADHD, the existence of genetic and neurobiological causes for the disorder, and the range and severity of impairments caused by the disorder.
The Statement makes several key points:
The facts about ADHD will prevail if you take the time to learn about them. This can be difficult when faced with a media blitz of information and misinformation about the disorder. In future blogs, I'll separate the fact from the fiction by addressing several popular myths about ADHD.
I have too often seen on the Internet or media the statement that ADHD is a recent invention of psychiatrists and/or pharmaceutical companies. Such statements ignore the long history of ADHD that my colleague and I reviewed in our "Primer" about ADHD.
ADHD has a long history. The first ADHD syndrome was described in a German medical textbook by Weikard in 1775. That's not a typo. The ADHD syndrome had been identified before the birth of the USA. Dr.Weikard did not use the term ADD or ADHD, yet he described a syndrome of hyperactivity and inattention that corresponds to what we call ADHD today.
ADHD-like syndromes were described in Scotland in 1798 and in France in the late 19th century. The first description of an ADHD-like syndrome in a medical journal was by Dr. George Still in 1901 who described what he called a 'defect of moral control' in The Lancet. The discovery that stimulant drugs are effective in treating ADHD occurred in 1937 when Dr. Charles Bradley discovered that Benzedrine (an amphetamine compound) improved the behavior of children diagnosed with behavioral disorders. In subsequent years, several terms were used to describe children with ADHD symptoms. Examples are Kramer-Pollnow syndrome, minimal brain damage, minimal brain dysfunction, and hyperkinetic reaction.
,It was not until the 1980s that the term Attention Deficit Disorder (ADD) came into widespread use with the publication of the American Psychiatric Association's Diagnostic and Statistical Manual (DSM). During the ensuing decades, several changes were made to the diagnostic criteria and the term ADD was replaced with ADHD so as not to overemphasize either inattention or hyperactivity when diagnosing the disorder. And, as the graphic below describes, these new and better diagnostic criteria led to many breakthroughs in our understanding of the nature of the disorder and the efficacy of treatments. So, if you think that ADHD is an invention of contemporary society, think again. It has been with us for quite some time.
How Extensive Is Perceived Discrimination Among Adults With ADHD?
An international team of mental health professionals used a nationally representative sample of English adults over age 16 to explore this question. Of 13,671 households selected, 7,461 (a little more than half) participated.
Participants used the Adult ADHD Self-Report Scale (ASRS) Screener to assess symptoms of ADHD on a scale ranging from 0 to 24. Those scoring ≥ 14 were considered as having high levels of ADHD symptoms. They also responded to a computer-assisted self-interview that asked, “Have you been unfairly treated in the last 12 months … because of your mental health,” requiring a yes or no answer.
The raw data showed an exponential relationship between levels of ADHD symptoms and mental health discrimination. Respondents scoring 0-9 on the ASRS reported negligible discrimination (prevalence of 0.3%). Among those scoring 10-13, the prevalence was 2.3%, rising to 5.5% of those with scores in the 14-17 range, and 18.8% among those in the 18-24 range.
After adjusting for sociodemographic variables (sex, age, ethnicity, marital status, educational attainment, and income), those with high levels of ADHD symptoms were nearly 10 times more likely to have experienced discrimination than others. After adjusting for other psychopathology and stressful life events, this increased risk fell to 2.8.
The authors concluded, “This is an important finding given that mental health discrimination has been associated with detrimental consequences in individuals with mental health disorders and therefore might also be a factor in the negative outcomes that have been noted in adults with ADHD/ADHD symptomatology. As ADHD continues to be underdiagnosed and untreated in adults, the results of this study highlight the importance of identifying and treating these individuals and suggest that interventions to inform the public about ADHD may be important for reducing the stigma and discrimination associated with this condition.”
The ENIGMA-ADHD Working Group published their second large study on the brains of people with ADHD in the American Journal of Psychiatry this month. In this second study, the focus was on the cerebral cortex, which is the outer layer of the brain.
ADHD symptoms include inattention and/or hyperactivity and acting impulsively. The disorder affects more than one in 20 (5.3%) children, and two-thirds of those diagnosed continue to experience symptoms as adults.
In this study, researchers found subtle differences in the brain’s outer layer - the cortex - when they combined brain imaging data on almost 4,000 participants from 37 research groups worldwide. The differences were only significant for children and did not hold for adolescents or adults. The childhood effects were most prominent and widespread for the surface area of the cortex. More focal changes were found in the thickness of the cortex. All differences were subtle and detected only at a group level, and thus these brain images cannot be used to diagnose ADHD or guide its treatment.
These subtle differences in the brain’s cortex were not limited to people with the clinical diagnosis of ADHD: they were also present - in a less marked form - in youth with some ADHD symptoms. This second finding results from a collaboration between the ENIGMA-ADHD Working Group and the Generation-R study from Rotterdam, which has brain images on 2700 children aged 9-11 years from the general population. The researchers found more symptoms of inattention to be associated with a decrease in cortical surface area. Furthermore, siblings of those with ADHD showed changes to their cortical surface area that resembled their affected sibling. This suggests that familial factors such as genetics or shared environment may play a role in brain cortical characteristics.
This is the largest study to date to look at the cortex of people with ADHD. It included 2246 people with a diagnosis of ADHD and 1713 people without, aged between four and 63 years old. This is the second study published by the ENIGMA-ADHD Working Group; the first examined structures that are deep in the brain. The ADHD Working Group is one of over 50 working groups of the ENIGMA Consortium, in which international researchers pull together to understand the brain alterations associated with different disorders and the role of genetic and environmental factors in those alterations.
The authors say the findings could help improve understanding of the disorder. ‘We identify cortical differences that are consistently associated with ADHD by combining data from many different research groups internationally. We find that the differences extend beyond narrowly-defined clinical diagnoses and are seen, in a less marked manner, in those with some ADHD symptoms and in unaffected siblings of people with ADHD. This finding supports the idea that the symptoms underlying ADHD may be a continuous trait in the population, which has already been reported by other behavioral and genetic studies.’. In the future, the ADHD Working Group hopes to look at additional key features in the brain- such as the structural connections between brain areas – and to increase the representation of adults affected by ADHD, in whom limited research has been performed to date.
See: https://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.2019.18091033