Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
X
Executive function impairment is a key feature of ADHD, with its severity linked to the intensity of ADHD symptoms. Executive function involves managing complex cognitive tasks for organized behavior and includes three main areas: inhibitory control (suppressing impulsive actions), working memory (holding information briefly), and cognitive flexibility (switching between different mental tasks). Improving executive functions is a critical objective in the treatment of ADHD.
Amphetamines and methylphenidate are commonly used to treat ADHD, but can cause side effects like reduced appetite, sleep problems, nausea, and headaches. Long-term use may also lead to stunted growth and cardiovascular issues. This encourages the search for non-invasive methods to enhance executive function in children with ADHD.
Neurological techniques like neurofeedback and transcranial stimulation are increasingly used to treat children with neurodevelopmental disorders. Neurofeedback is the most adopted method; it is noninvasive and aims to improve brain function by providing real-time feedback on brainwave activity so participants can self-regulate targeted brain regions.
The systematic search and meta-analysis examined children and adolescents aged 6–18 with ADHD. It included randomized and non-randomized controlled trials, as well as quasi-experimental studies that reported statistical data such as participant numbers, means, and standard deviations. Studies were required to use validated measures of executive function, including neurocognitive tasks or questionnaires. They also had to have control groups.
A meta-analysis of ten studies (539 participants) found a small-to-medium improvement in inhibitory control after neurofeedback training, with no publication bias and minimal study heterogeneity*. Long-term treatment (over 21 hours) showed benefits, while short-term treatment did not. However, publication bias was present in the long-term treatment studies and was not addressed.
A meta-analysis of seven studies with 370 children and adolescents found a small-to-medium improvement in working memory after neurofeedback, with no publication bias overall but high heterogeneity. A dose-response effect was observed: treatments over 21 hours showed benefits, while shorter ones did not. However, publication bias was present in the long-term treatment studies and was not addressed.
The study team also looked at sustained effects six months to a year after conclusion of training. Meta-analysis of two studies totaling 131 participants found a sustained small-to-medium improvement in inhibitory control, with negligible heterogeneity. Meta-analysis of three studies combining 182 participants found a sustained medium improvement in working memory, with moderate heterogeneity and no sign of publication bias.
The team concluded, “NFT is an effective intervention for improving executive function in children with ADHD, specifically inhibitory control and working memory. This approach demonstrates a more pronounced impact on working memory when extended beyond 1000 min [sic], with inhibitory control following closely behind. Furthermore, the evidence suggests that NFT may have sustained effects on both working memory and inhibitory control. Given the relatively small number of studies assessing long-term effects and the potential for publication bias, further research is necessary to confirm these effects.”
Moreover, because 1) RCTs are the gold standard, and the meta-analyses combined RCTs with non-RCTs, and 2) data from neurocognitive tasks was combined with data from more subjective and less accurate questionnaires, these meta-analysis results should be interpreted with further caution.
*Heterogeneity refers to the rate of variation between individual study outcomes. High heterogeneity means that there was substantial variation in the results. When a meta-anaylysis has high heterogeneity, it suggests that the studies differ significantly in their populations, methods, interventions, or outcomes, making the combined result much less reliable.
Good science isn’t static: We’re updating past blogs to reflect new findings and higher‑quality evidence.
The Background on ADHD and Vitamin D:
In a blog published in the early days of The ADHD Evidence Project, we discussed an Iranian study examining the association between Vitamin D levels and ADHD in children. The meta-analysis combined 13 studies for a total of 10,344 participants. The researchers found that youth with ADHD had "modest but significant" lower serum concentrations of 25-hydroxyvitamin D compared to those without ADHD.
They also identified four prospective studies that compared maternal vitamin D levels with the subsequent development of ADHD symptoms in their children. Two of these used maternal serum levels, and two used umbilical cord serum levels. Together, these studies found that low maternal vitamin D levels were associated with a 40% higher risk of ADHD in their children.
Ultimately, the researchers noted that this result "should be considered with caution" because it was heavily dependent on one of the prospective studies included in the analysis. We concluded our blog by pointing out that further research, including more longitudinal studies, is needed before clinicians should start recommending vitamin D supplementation to ADHD patients.
Further Research:
Since publishing that initial blog, several more studies have been published about this association.
The World Federation of Societies of Biological Psychiatry (WFSBP) and the Canadian Network for Mood and Anxiety Disorders (CANMAT) convened an international task force involving 31 leading academics and clinicians from 15 countries between 2019 and 2021. Their goal was to provide a definitive, evidence-based report to assist clinicians in making decisions around the recommendation of nutraceuticals and phytoceuticals for major psychiatric disorders.
For ADHD, the guidelines found only weak support for micronutrients and vitamin D in treatment. Overall, the task force concluded that nutraceuticals and phytoceuticals currently offer very limited evidence‑based benefit for ADHD management.
Another study published in 2023 systematically assessed the results of previously published studies to examine the associations between maternal vitamin D levels, measured as circulating 25(OH)D levels in pregnancy or at birth, and later offspring psychiatric outcomes. This study found a clear association between maternal vitamin D deficiency and subsequent offspring ADHD. They concluded, “Future studies with larger sample sizes, longer follow-up periods, and prenatal vitamin D assessed at multiple time points are needed.” To that, I will add that studies of this issue should use genetically informed designs to avoid confounding.
Conclusion:
Taking into account the updated research on the topic, there does seem to be an association between low prenatal vitamin D levels and the risk of subsequent offspring ADHD, but it is too soon to say it is a causal relationship due to the possibility of confounding. There is no high-quality evidence, however, that supplementing with vitamin D will significantly reduce symptoms in current ADHD patients.
New research has uncovered important links between certain blood metabolites and ADHD by using a genetic method called Mendelian randomization. This approach leverages natural genetic differences to help identify which metabolites might actually cause changes in ADHD risk, offering stronger clues than traditional observational studies.
Key Metabolic Pathways Involved:
The study found 42 plasma metabolites with a causal relationship to ADHD. Most fall into two major groups:
Since many metabolites come from dietary sources like proteins and fats this supports the idea that diet could influence metabolic pathways involved in ADHD. However, because the study focused on genetic influences on metabolite levels, it doesn’t directly prove that dietary changes will have the same effects.
Notable Metabolites:
Five metabolites showed bidirectional links with ADHD, meaning genetic risk for ADHD also affects their levels which suggests a complex interaction between brain function and metabolism.
Twelve ADHD-related metabolites are targets of existing drugs or supplements, including:
While these findings highlight biological pathways, they don’t prove that changing diet will directly alter ADHD symptoms. Metabolite levels are shaped by genetics plus environment, lifestyle, and health factors, which require further study.
Conclusion:
This research provides stronger evidence of metabolic pathways involved in ADHD and points to new possibilities for diagnosis and treatment. Future work could explore how diet or drugs might safely adjust these metabolites to help manage ADHD.
While this study strengthens the link between amino acid and fatty acid metabolism and ADHD risk, suggesting that diet could play a role, ultimately more research is still needed before experts could use this research to give specific nutritional advice.
Background Info:
Executive functions include inhibitory control, working memory, and cognitive flexibility. Inhibitory control is the ability to suppress distractions and focus on goals, which is the main deficit in ADHD.
Children and adolescents with ADHD often have off-task, unrelated thoughts and are easily distracted, limiting their sustained attention. This makes it difficult for them to focus on tasks and leads to impulsive behaviors that affect their daily life, academics, and social interactions. Improving inhibitory control in ADHD children and adolescents is essential.
Stimulant medications are commonly used to treat ADHD. However, side effects like insomnia, loss of appetite, and headaches may make parents hesitant to use these medications for their children.
Non-pharmacological treatments like cognitive training, behavior therapy, and physical exercise have gained attention for their lack of side effects. Research shows that some non-pharmacological methods can improve cognitive outcomes significantly, underscoring their potential in treating ADHD.
Study:
A Chinese research team identified four key gaps in current research on non-pharmacological treatments for inhibitory control in children with ADHD:
The team therefore performed a network meta-analysis of long-term randomized controlled trials (RCTs) to assess and rank the effectiveness of various non-pharmacological treatments on inhibitory control in children and adolescents with ADHD.
The team included only RCTs relying on professional diagnoses of ADHD, excluding those based only on parent and teacher rating scales.
The included studies measured inhibitory control using objective neurocognitive tasks, such as the Stroop test and the Go/No-Go test, to reduce potential subjective bias. Studies relying on parent- or teacher-reported questionnaires were excluded.
Controls either received no intervention or placebo, such as watching running videos and attending history classes.
Meta-analysis of 16 studies combining 546 participants found large short-term effect size improvements in inhibitory control from physical exercise. But the two studies with a total of 110 participants that performed a follow-up test reported only a small-to-medium effect size improvement.
For cognitive training, a meta-analysis of fifteen studies totaling 674 participants reported a medium effect size of short-term improvement in inhibitory control. The ten studies with 563 participants that performed a follow-up test found only a small effect size improvement since treatment initiation.
For behavioral therapy, meta-analysis of six studies encompassing 244 individuals likewise found a medium effect size short-term improvement in inhibitory control. In this case, however two studies combining 91 participants that performed a follow-up test reported that the medium effect size improvement was maintained.
For neurofeedback, meta-analysis of seven studies encompassing 186 individuals found a small-to-medium effect size short-term improvement in inhibitory control. The only study that performed a follow-up test reported a small effect size improvement since treatment initiation.
The two studies with a combined 44 individuals exploring board games found no significant improvement in inhibitory control. Likewise, the two studies combining 32 participants that explored meditation found no significant improvement in inhibitory control.
There was no indication of publication bias.
Conclusion:
The team concluded, “Existing evidence shows that physical exercise, behavior therapy, cognitive training, and neurofeedback can effectively improve the inhibitory control of children and adolescents with ADHD. However, meditation, EMG feedback, and board games did not significantly affect inhibitory control. Physical exercise has the best effect among all non-pharmacological treatments, but its impact will be weakened after intervention. Behavior therapy and cognitive training had a slightly lower effect, but they have a better maintenance effect.”
Ultimately, the study results suggest that non-drug treatments can help children and teens with ADHD improve their ability to control their actions and stay focused. Some methods, like physical exercise, work well at first but may fade once the activity stops. Other methods, like behavioral therapy and cognitive training, may take a little longer to show results but can last longer and make a bigger difference over time. Ultimately, and most importantly, because this work did not study the symptoms of ADHD or its real-world impairments, it provides no reason to change current treatment practices for ADHD.
Serotonin is a key chemical in the body that helps regulate mood, behavior, and also many physical functions such as sleep and digestion. It has also been linked to how ADHD (attention-deficit/hyperactivity disorder) develops in the brain. This study looks at how serotonin may be involved in both the mental health and physical health conditions that often occur alongside ADHD.
It is well-established that ADHD is more than just trouble focusing or staying still. For many, it brings along a host of other physical and mental health challenges. It is very common for those with ADHD to also have other diagnosed disorders. For example, those with ADHD are often also diagnosed with depression, anxiety, or sleep disorders. When these issues overlap, they are called comorbidities.
A new comprehensive review, led by Dr. Stephen V. Faraone and colleagues, delves into how serotonin (5-HT), a major brain chemical, may be at the heart of many of these common comorbidities.
Serotonin is a neurotransmitter most often linked to mood, but its role in regulating the body has much broader implications. It regulates sleep, digestion, metabolism, hormonal balance, and even immune responses. Although ADHD has long been associated with dopamine and norepinephrine dysregulation, this review suggests that serotonin also plays a central role, especially when it comes to comorbid conditions.
This research suggests that serotonin dysregulation could explain the diverse and sometimes puzzling range of symptoms seen in ADHD patients. It supports a more integrative model of ADHD—one that goes beyond the brain’s attention, reward and executive control circuits and considers broader physiological and psychological health.
future research into the role of serotonin could help develop more tailored interventions, especially for patients who don't respond well to stimulant medications. Future studies may focus on serotonin’s role in early ADHD development and how it interacts with environmental and genetic factors.
This study is a strong reminder that ADHD is a complex, multifaceted condition. Differential diagnosis is crucial to properly diagnosing and treating ADHD. Clinicians' understanding of the underlying link between ADHD and its common comorbidities may help future ADHD patients receive the individualized care they need. By shedding light on serotonin’s wide-reaching influence, this study may provide a valuable roadmap for improving how we diagnose and treat those with complex comorbidities in the future.
Our recent study, published in the Journal of Clinical Medicine, aims to shed light on an under-recognized challenge faced by many adults with Type 1 diabetes (T1D): attention-deficit/hyperactivity disorder (ADHD) symptoms.
We surveyed over 2,000 adults with T1D using the Adult Self-Report Scale (ASRS) for ADHD and analyzed their medical records. Of those who responded, nearly one-third met the criteria for ADHD symptoms—far higher than the general population average. Notably, only about 15% had a formal diagnosis or were receiving treatment.
The findings are striking: individuals with higher ADHD symptom scores had significantly worse blood sugar control, as indicated by higher HbA1c levels. Those flagged as "ASRS positive" were more than twice as likely to have poor glycemic control (HbA1c ≥ 8.0%). They also reported higher levels of depressive symptoms.
As expected, ADHD symptoms decreased with age but remained more common than in the general public. No strong links were found between ADHD symptoms and other cardiometabolic issues.
This study highlights a previously overlooked yet highly significant factor in diabetes management. ADHD-related difficulties—such as forgetfulness, inattention, or impulsivity—can make managing a complex condition like T1D more difficult. The researchers call for more screening and awareness of ADHD in adults with diabetes, which could lead to better mental health and improved blood sugar outcomes.
Takeaway: If you or a loved one with T1D struggles with focus, organization, or consistent self-care, it may be worth exploring whether ADHD could be part of the picture. Early identification and support are crucial to managing this common comorbidity.
Background:
This nationwide population study by a Norwegian team aimed to evaluate the relationship between ADHD and various types of child welfare services contacts over a long-term period of up to 18 years among children and adolescents aged 5 to 18 years diagnosed with ADHD, in comparison to the general population within the same age group.
Norway has a single-payer national health insurance system that fully covers virtually the entirety of its population. In combination with a system of national population and health registers, this facilitates nationwide population studies, overcoming the limitations of relying on population sampling.
Study:
The study population included all 8,051 children and adolescents aged 5 to 18 who were diagnosed with ADHD for the first time in the Norwegian Patient Registry between 2009 and 2011.
The study also included a comparison sample of 75,184 children and adolescents aged 5–18 with no child welfare services contact during 2009–2011.
The interventions delivered by child welfare services in Norway are largely divided into two primary categories: supportive intervention and out-of-home placement.
Supportive interventions include improving parenting skills, promoting child development, providing supervision and control, facilitating cooperation with other services, assessments and treatments by other institutions, and offering housing support.
Norway uses foster homes or child welfare institutions as a last resort. When supportive interventions fail to meet the child’s needs, the child welfare services can temporarily place the child in these facilities. If parents disagree, the county social welfare board decides based on a municipal request.
The team adjusted for potential confounders: sex, age, parental socioeconomic status (father’s and mother’s education and income level), and marital status.
Results:
With these adjustments, children and adolescents diagnosed with ADHD were over six times more likely to have any contact with child welfare services than their general population peers. This was equally true for males and females.
Children and adolescents diagnosed with ADHD were also over six times more likely to receive supportive interventions from child welfare services. Again, there were no differences between males and females.
Finally, children and adolescents diagnosed with ADHD were roughly seven times more likely to have an out-of-home placement than their general population peers. For males this rose to eight times more likely.
Conclusion:
The team concluded, “This population-based study provides robust evidence of a higher rate and strong association between ADHD and contact with CWS [Child Welfare Service] compared to the general population in Norway.”
Most preschool-aged children diagnosed with ADHD also exhibit comorbid mental or developmental conditions. Long-term studies following these children into adulthood have demonstrated that higher severity of ADHD symptoms in early childhood is associated with a more persistent course of ADHD.
The Study:
Sweden has a single-payer national health insurance system that covers virtually all residents, facilitating nationwide population studies. An international study team (US, Brazil, Sweden) searched national registers for predictors of ADHD diagnoses among all 631,695 surviving and non-emigrating preschoolers born from 2001 through 2007.
Preschool ADHD was defined by diagnosis or prescription of ADHD medications issued to toddlers aged three through five years old.
Predictors were conditions diagnosed prior to the ADHD diagnosis.
A total of 1,686 (2.7%) preschoolers were diagnosed with ADHD, with the mean age at diagnosis being 4.6 years.
The Numbers:
Adjusting for sex and birth year, the team reported the following predictors, in order of magnitude:
The Conclusion:
This large population study underscores that many conditions present in early childhood can help predict an ADHD diagnosis in preschoolers. Recognizing these risk factors early may aid in identifying and addressing ADHD sooner, hopefully improving outcomes for children as they grow
Background:
Although ADHD typically begins in childhood, its symptoms frequently continue into adulthood, and it is widely acknowledged as having a lifelong prevalence for most persons with ADHD.
ADHD symptoms are linked to poor academic performance, mainly due to cognitive issues like compromised working memory. These symptoms lead to long-term negative academic outcomes and difficulty in achieving higher educational degrees.
Oppositional Defiant Disorder (ODD) often co-occurs with ADHD. In community samples, it appears in about 50–60% of those with ADHD. ODD symptoms include an angry or irritable mood, vindictiveness toward others, and argumentative or defiant behavior that lasts more than 6 months and significantly disrupts daily life.
Since ODD tends to co-occur with ADHD, research on pure ODD groups without ADHD is limited, especially in community samples. This longitudinal study aimed to examine the impact of ADHD and ODD symptoms in adolescence on academic performance at age 16 and educational attainment by age 32.
Study:
Finland, like other Nordic countries, has a single-payer health insurance system that includes virtually all residents. A Finnish research team used the Northern Finnish Birth Cohort to include all 9,432 children born from July 1, 1985, through June 30, 1986, and followed since then.
ADHD symptoms were measured at age 16 using the Strengths and Weaknesses of ADHD symptoms and Normal-behaviors (SWAN) scale.
Symptoms of ODD were screened using a 7-point rating scale similar to the SWAN scale, based on eight DSM-IV-TR criteria: “Control temper”, “Avoid arguing with adults”, “Follow adult requests or rules”, “Avoid deliberately annoying others”, “Assume responsibility for mistakes or misbehaviour”, “Ignore annoyances from others”, “Control anger and resentment”, and “Control spitefulness and vindictiveness.”
Higher education attainments were determined at age 32.
Results:
After adjusting for the educational attainments of the parents of the subjects, family type, and psychiatric disorders other than ADHD or ODD, males with ADHD symptoms at age 16 had a quarter, and females a little over a third, of the higher education attainments of peers without ADHD symptoms at age 32.
With the same adjustments, males with ODD symptoms alone had two-thirds, and females 80%, of the higher education attainments of peers without ODD, but neither outcome was statistically significant.
However, all participants with combined ADHD and ODD symptoms at age 16 had roughly one-fifth of the higher education attainments of peers without such symptoms upon reaching age 32.
Interpretation:
The team concluded, “The findings that emerged from this large longitudinal birth cohort study showed that the co-occurrence of ODD and ADHD symptoms in adolescence predicted the greatest deficits of all in educational attainment in adulthood.”
This study highlights the significant, long-lasting impact that co-occurring ADHD and ODD symptoms can have on educational outcomes well into adulthood. It underscores the importance of addressing both disorders together during adolescence to help improve future academic success.
The Background:
Down syndrome (DS) is a genetic disorder resulting from an extra copy of chromosome 21. It is associated with intellectual disability.
Three to five thousand children are born with Down syndrome each year. They have higher risks for conditions like hypothyroidism, sleep apnea, epilepsy, sensory issues, infections, and autoimmune diseases. Research on ADHD in patients with Down syndrome has been inconclusive.
The Study:
The National Health Interview Survey (NHIS) is a household survey conducted by the National Center for Health Statistics at the CDC.
Due to the low prevalence of Down syndrome, a Chinese research team used NHIS records from 1997 to 2018 to analyze data from 214,300 children aged 3 to 17, to obtain a sufficiently large and nationally representative sample to investigate any potential association with ADHD.
DS and ADHD were identified by asking, “Has a doctor or health professional ever diagnosed your child with Down syndrome, Attention Deficit Hyperactivity Disorder (ADHD), or Attention Deficit Disorder (ADD)?”
After adjusting for age, sex, and race/ethnicity, plus family highest education level, family income-to-poverty ratio, and geographic region, children and adolescents with Down syndrome had 70% greater odds of also having ADHD than children and adolescents without Down syndrome. There were no significant differences between males and females.
The Take-Away:
The team concluded, “in a nationwide population-based study of U.S. children, we found that a Down syndrome diagnosis was associated with a higher prevalence of ASD and ADHD. Our findings highlight the necessity of conducting early and routine screenings for ASD and ADHD in children with Down syndrome within clinical settings to improve the effectiveness of interventions.”
An estimated 150 million children and adolescents live on the streets worldwide. In the U.S., roughly 1.5 million experience homelessness annually. Homelessness increases the risk of health issues, violence, early pregnancy, substance use, vaccine-preventable diseases, mental disorders, suicidal behavior, and early death.
Rates of anxiety, major depression, conduct disorders, and post-traumatic stress disorder are higher among school-age homeless children compared to their housed peers.
However, there has been limited attention to ADHD, leading a French research team to conduct a systematic review and meta-analysis of its prevalence among homeless children and adolescents.
The inclusion criteria required that participants be homeless, under 19 years of age at baseline, and have ADHD identified through a screening tool, self-report, or clinical assessment.
Results:
Meta-analysis of 13 studies with a combined total of 2,878 individuals found indications of ADHD in almost one in four homeless children and adolescents. There was no sign of publication bias, but considerable variation in estimates across studies.
The team found a dose-response effect. Meta-analysis of six studies with 1,334 participants under 12 years old reported 13% with indications of ADHD. Meta-analysis of five studies encompassing 991 individuals, 12 through 18 years old, found an ADHD rate of 43%. The ADHD rate among adolescents was 3.3 times greater than among children.
There were no significant differences among countries.
Moreover, limiting the meta-analysis to the seven studies with 1,538 participants that relied on clinical ADHD diagnoses, the gold standard, resulted in an ADHD prevalence of 23%.
The team concluded, “The review of 13 studies revealed that ADHD is common in homeless children and adolescents, suggesting that homelessness may contribute to the development or exacerbation of ADHD symptoms. Conversely, ADHD with other comorbidities may increase the likelihood of homelessness. Reintegrating these children and adolescents into care systems and ensuring access to public health interventions tailored for homeless families and youth is imperative for breaking the cycle of homelessness and improving long-term trajectories.”
In other words, this review not only confirmed a strong link between homelessness and ADHD in children and youth, but also suggested a complex, cyclical relationship. Providing tailored health care and support for these vulnerable groups is crucial to interrupt this cycle and help improve their future outcomes.