September 17, 2025

ADHD Medication and Academic Achievement: What Do We Really Know?

Parents and teachers often ask: Does ADHD medication actually improve grades and school performance? The answer is: yes, but with important limitations. Medications are very effective at reducing inattention, hyperactivity, and impulsivity but their impact on long-term academic outcomes like grades and test scores is not as consistent.

In the Classroom

The medications for ADHD consistently: Improve attention, reduce classroom disruptions, increase time spent on-task and help children complete more schoolwork and homework. Medication can help children with ADHD access learning by improving the conditions for paying attention and persisting with work.

Does Medication Improve Test Scores and Grades?

This is where the picture gets more complicated.  Medications have  stronger effect on how much work is completed but a weaker effect on accuracy. Many studies show that children on medication attempt more problems in reading, math, and spelling, but the number of correct answers doesn’t always improve as much. Some studies find small but significant improvements in national exam scores and higher education entrance tests during periods when children with ADHD are medicated.

Grades improve, as well, but modestly. Large registry studies in Sweden show that students who consistently take medication earn higher grades than those who don’t. However, these gains usually do not close the achievement gap with peers who do not have ADHD.

Keep in mind that small improvements for a group as a whole mean that some children are benefiting greatly from medication and others not at all.  We have no way of predicting which children will improve and which do not. 

Medication Alone Isn’t Enough

Academic success depends on more than just reducing inattention, hyperactivity and impulsivity. Skills like organization, planning, studying, and managing long-term projects are also critical.  Medication cannot teach these skills.

So, in addition to medication, the patient's treatment program should include educational support (tutoring, structured study skills programs), behavioral interventions (parent training, classroom management strategies), and accommodations at school (extra time, reduced distractions, organizational aids) Parents should discuss with their prescriber which of these methods would be appropriate.

Conclusions 

ADHD medication is a powerful tool for reducing symptoms and supporting learning. It improves test scores and grades for some children, especially when taken consistently. But it is not a magic bullet for academic success. The best results come when medication is combined with educational and behavioral supports that help children build the skills they need to thrive in school and beyond.

Cortese, S., et al. (2018). Comparative efficacy and tolerability of medications for ADHD in children, adolescents, and adults: a systematic review and network meta-analysis. The Lancet Psychiatry, 5(9), 727–738.

Jangmo, A., et al. (2019). Attention-Deficit/Hyperactivity Disorder, School Performance, and Medication: A Swedish 9-Year Follow-Up Study. Journal of the American Academy of Child & Adolescent Psychiatry, 58(4), 423–432.

Kortekaas-Rijlaarsdam, A. F., et al. (2019). Does methylphenidate improve academic performance? A meta-analysis and study on the role of daily practice. European Child & Adolescent Psychiatry, 28(3), 357–370.

Lu, Y., et al. (2017). Association Between Medication Use and Performance on Higher Education Entrance Exams in ADHD. JAMA Psychiatry, 74(8), 815–822.

Molina, B. S. G., et al. (2009). The MTA at 8 Years: Prospective Follow-Up of Children Treated for Combined-Type ADHD in a Multisite Study. Journal of the American Academy of Child & Adolescent Psychiatry, 48(5), 484–500.

Pérez, T. V., et al. (2025). Long-term effect of pharmacological treatment on academic outcomes: a target trial emulation. International Journal of Epidemiology, 54(2).

Shaw, M., et al. (2012). A systematic review and analysis of long-term outcomes in ADHD: effects of treatment and non-treatment. BMC Medicine, 10, 99.

Related posts

How Effective is Cognitive Training for Preschool Children?

How effective is cognitive training for preschool children?

A German team of researchers performed a comprehensive search of the medical literature and identified 35randomized controlled trials (RCTs) published in English that explored this question. Participating children were between three and six years old. Children with intellectual disabilities, sensory disabilities, or specific neurological disorders such as epilepsy were excluded.

The total number of participating preschoolers was over three thousand, drawn almost exclusively from the general population, meaning these studies were not specifically evaluating effects on children with ADHD. But given that ADHD results in poorer executive functioning, evidence of the effectiveness of cognitive training would suggest it could help partially reverse such deficits.

RCTs assign participants randomly to a treatment group and a group not receiving treatment but often receiving a placebo. But RCTs themselves vary in risk of bias, depending on:

  • whether the control condition was passive (i.e. waiting list or no treatment) or active/sham (an activity of similar duration and intensity to the treatment condition)
  • whether the outcome was measured by subjective rating (e.g. by questionnaires, susceptible to reporting biases) or more objective neuropsychological testing;
  • whether the assessment of outcome was by blinded assessors unaware of participants' treatment conditions;
  • whether there was a risk of bias from participants dropping out of the trial.

After evaluating the RCTs by these criteria, the team performed a series of meta-analyses.

Combining the 23 RCTs with over 2,000 children that measured working memory, they found that cognitive training led to robust moderate improvements. Looking only at the eleven most rigorously controlled studies strengthened the effect, with moderate-to-large gains.

Twenty-six RCTs with over 2,200 children assessed inhibitory control. When pooled, they indicated a small-to-moderate improvement from cognitive training. Including only the seven most rigorously controlled studies again strengthened the effect, boosting it into the moderate effect zone.

Twelve RCTs with over 1,500 participants tested the effects of cognitive training on flexibility. When combined, they pointed to moderate gains. Looking at only the four well-controlled studies boosted the effect to strong gains. Yet here there was evidence of publication bias, so no firm conclusion can be drawn.

Only four studies with a combined total of 119 preschoolers tested the effects on ADHD ratings. The meta-analysis found a small but non-significant improvement, very likely due to insufficient sampling. As the authors noted, "some findings of the meta-analysis are limited by the insufficient number of eligible studies. Specifically, more studies are needed which use blinded assessments of subjective ratings of ADHD ... symptoms ..."

The authors concluded that their meta-analyses revealed significant, mostly medium-sized effects of the preschool interventions on core EFs [executive functions] in studies showing the low risk of bias."

January 2, 2022

Study of U.S. 12th grade public and private school students finds no link between stimulant use for ADHD and subsequent cocaine or methamphetamine use

Large Scale Study of U.S. High Schoolers Finds No Link Between Stimulant Use for ADHD and Subsequent Cocaine or Methamphetamine Use

Monitoring the Future is a multicohort U.S. national longitudinal study of adolescents followed up into young adulthood. 

The U.S. research team used data from this study to follow 5,034 twelfth graders over a period of six years, until they were 23 and 24 years of age.

Prescription stimulant misuse was assessed at baseline and each follow-up survey year by asking how often they used prescription stimulants without a physician’s orders. They were similarly asked about cocaine and methamphetamine use.

The study team adjusted for the following confounding variables: sex, race and ethnicity, parents’ level of education, urbanicity, U.S. region, cohort year, grade point average during high school, past-30-day cigarette use (at 18 years of age), past-2-week binge drinking (at 18), past-year marijuana use (at 18), past-year prescription opioid misuse (at 18), past-year prescription stimulant misuse (at 18), lifetime cocaine use (at 18), lifetime methamphetamine use (at 18), lifetime use of nonstimulant therapy for ADHD (at 18), and discontinued use of stimulant therapy for ADHD (at 18).

With these adjustments, they found that stimulant use for ADHD was in no way associated with subsequent cocaine use. In fact, it was associated with lesser odds of subsequent cocaine use, though the association was not statistically significant.

Likewise, they reported that stimulant use for ADHD was in no way associated with subsequent methamphetamine use.

On the other hand, those who used prescription stimulants without a physician’s orders were 2.6 times more likely to subsequently use either cocaine or methamphetamine.

The team concluded, “In this multicohort study of adolescents exposed to prescription stimulants, adolescents who used stimulant therapy for ADHD did not differ from population controls in initiation of illicit stimulant (cocaine or methamphetamine) use, which suggested a potential protective effect, given evidence of elevated illicit stimulant use among those with ADHD. In contrast, monitoring adolescents for PSM is warranted because this behavior offered a strong signal for transitioning to later cocaine or methamphetamine initiation and use during young adulthood.”

February 15, 2024

Nationwide study of U.S. high schools finds link between percentage of school body on prescription ADHD stimulant medication and the rate of nonmedical use by schoolmates

Nationwide Study of U.S. High Schools Finds Link Between Percentage of Students Prescribed Stimulant Medication and Rate of Nonmedical Use by Schoolmates

Noting that “little is known about whether school-level stimulant therapy for ADHD is associated with NUPS [nonmedical use of prescription stimulants] among US secondary school students,” a team of American researchers searched for answers in a nationally representative sample of 3,284 U.S. secondary schools with well over 150,000 high school students.

“Previous studies,” the authors continued, “have largely neglected school-level factors associated with NUPS among US secondary school students, including school size, school geographical location, school-level racial composition, school-level rates of substance use (eg, binge drinking), and school-level stimulant therapy for ADHD.”

In surveys, students were asked if they had ever taken stimulant medications for ADHD under a physician’s or health professional’s supervision, with three possible answers: no, yes but only in the past, and yes, currently. Responses for use in the past, and separately for current use, were combined and aggregated to the school level to reflect the percentage of the study body who used prescription stimulants for ADHD. 

The surveys explored NUPS by asking, “On how many occasions (if any) have you taken amphetamines or other prescription stimulant drugs on your own—that is, without a doctor telling you to take them... in your lifetime?...during the last 12 months?...during the last 30 days?” 

The study team controlled for sex, race and ethnicity, parental education, GPA, binge drinking, cigarette smoking, cannabis use, cohort year, school type, grade level, urbanicity, school size, US Census region, % of student body with low grades, % female, % with at least one parent with a college degree, % White, % binge drinking during past 2 weeks, % cigarette smoking in past 30 days, and % cannabis use during the past 30 days. The analysis also included individual-level medical use of stimulant therapy for ADHD history to estimate individual-level past-year NUPS. Finally, it included both individual-level and school-level risk factors to assess individual-level past-year NUPS.

With all these adjustments, at the individual level, both high school students presently on prescribed stimulant therapy for ADHD and those who had previously been on such prescribed therapy were more than twice as likely to engage in past-year NUPS as those who were never on prescribed stimulant medication.

Turning to the school level, in schools where 12% or more of students were on prescribed stimulant therapy for ADHD, students in general were 36% more likely to engage in past-year NUPS than in schools where none of the students were on prescribed stimulant therapy for ADHD.

This is not surprising, as it confirms that students who use prescription drugs for nonmedical often get their supply from fellow students who are prescribed those drugs.

While at the individual level, binge drinking, cigarette smoking, and cannabis use were strong predictors of NUPS, at the whole-school level they had no significant effect. A poor grade point average mildly increased risk in the individual, but high percentages of students with low grades had no effect on peer NUPS. Race and ethnicity made a difference at the individual level (NUPS significantly more likely among White students than Blacks and Hispanics), but made no difference at the school level.

The team concluded, “These findings suggest that school-level stimulant therapy for ADHD and other school-level risk factors were significantly associated with NUPS and should be accounted for in risk-reduction strategies and prevention efforts.”

February 21, 2024

Meta-analysis Finds Assisted Reproductive Techniques Associated with Offspring ADHD

Meta-analysis Finds Assisted Reproductive Techniques Associated with Offspring ADHD 

Background:

Recent progress in reproductive medicine has increased the number of children conceived via assisted reproductive techniques (ART). These include: 

  • In vitro fertilization (IVF), in which eggs are retrieved from the ovaries and fertilized with sperm in a laboratory; embryos are then transferred into the uterus.  
  • Intracytoplasmic sperm injection (ICSI), where a single sperm is injected directly into an egg. 
  • Intrauterine insemination (IUI), in which sperm is placed directly into the uterus around the time of ovulation. This is often combined with ovulation-inducing (OI) medications. 

Although ART helps with infertility, there are concerns about its long-term effects on offspring, especially regarding neurodevelopment. Factors such as hormonal treatments, gamete manipulation, altered embryonic environments, as well as parental age and infertility, may influence brain development and raise the risk of neurodevelopmental and mental health disorders. 

With previous studies finding conflicting results on a possible association between ART and increased risk of mental health disorders, an Indian research team has just published a new meta-analysis exploring this topic. 

The Study:

Studies were eligible if they were observational (cohort, case-control, or cross-sectional), reported confounder-adjusted effect sizes for ADHD, and were published in English in peer-reviewed journals. 

A meta-analysis of eight studies encompassing nearly twelve million individuals indicated a 7% higher prevalence of ADHD in offspring conceived via IVF/ICSI compared to those conceived naturally. The heterogeneity among studies was minimal, and no evidence of publication bias was observed. 

The study’s 95% confidence interval ranged from 4% to 10%. Further analysis of five studies comprising almost nine million participants that distinguished outcomes by sex revealed that the increase in ADHD risk among female offspring was not statistically significant. In contrast, the elevated risk in male offspring persisted, though it was marginally significant, with the lower bound of the confidence limit at only 1%. 

Results:

A meta-analysis of three studies (1.4 million participants) found a 13% higher rate of ADHD in children conceived via ovulation induction/intrauterine insemination (OI/IUI) compared to natural conception. The effect size, though doubled, remains small. Minimal heterogeneity and no publication bias were observed. 

The team concluded, “The review found a small but statistically significant moderate certainty evidence of an increased risk of ADHD in those conceived through ART, compared to spontaneous conception. The magnitude of observed risk is small and is reassuring for parents and clinicians.” 

Our Take-Away:

Overall, the meta-analysis points to a small, but measurable increase in ADHD diagnoses among children conceived through ART, but the effect sizes are modest and supported by moderate-certainty evidence. And we must always keep in mind that the researchers who wrote the original articles could not correct for all possible confounds.  These findings suggest that while reproductive technologies may introduce slight variation in neurodevelopmental outcomes, the effects are small and uncertain. For families and clinicians, the results are generally reassuring: ART remains a safe and effective avenue to parenthood, and the results of this study should not be viewed as a prohibitive concern. Thoughtful developmental monitoring and open, evidence-based counseling can help ensure that ART-conceived children receive support that caters to their individual needs.

 

December 12, 2025

Taiwan Nationwide Population Study Concludes Dopaminergic ADHD Medications Reduce Risk of Myopia

The Background:

Myopia is a growing global health concern linked to conditions like macular degeneration, glaucoma, and retinal detachment. Its prevalence has surged in recent decades; by 2050, an estimated 5 billion people will have myopia. The increase is especially marked in Asia – a survey in Taiwan reports that 84% of students aged 15 to 18 are myopic, with 24% severely affected. 

Dopamine is an important neurotransmitter in the retina, involved in eye development, visual signaling, and refractive changes. The dopamine hypothesis, suggesting that retinal dopamine release helps prevent myopia, has emerged as a leading theory of myopia control. 

Most studies show ADHD is highly heritable, often involving dopamine system genes. ADHD is strongly associated with dopaminergic abnormalities, especially in dopamine transporter function and release dynamics. 

Medications for ADHD, like methylphenidate, atomoxetine, and clonidine, help regulate dopamine to reduce symptoms.  

The Study:

Given dopamine’s critical involvement in both ADHD and myopia, a Taiwanese research team hypothesized that medications for ADHD that influence dopaminergic pathways may have a significant effect on myopia risk.  

To evaluate this hypothesis, the team conducted a nationwide cohort study using data from Taiwan’s National Health Insurance (NHI) program, which covers 99% of the nation’s 23 million residents and provides access to comprehensive eye care and screenings. Taiwan requires visual acuity screenings beginning at age four, with annual examinations for school-aged children to promote the early detection of visual anomalies such as myopia.  

Furthermore, ADHD medication and diagnosis are tracked through compulsory diagnostic codes. This permits an accurate assessment of the effects of dopaminergic medications on myopia risk. 

Propensity score allocation using a multivariable logistic regression model was applied to reduce bias from confounding influences, pairing cohorts based on similar scores. 

The Results: 

Comparing 133,945 individuals with ADHD with an equal number without ADHD, untreated ADHD was associated with a 22% greater risk of myopia.  

However, after adjusting for covariates (gender, age, insured premium, comorbidities, location, and urbanization level), the ADHD cohort receiving medication treatment showed a 39% decreased risk of myopia relative to the untreated ADHD cohort. 

Narrowing this further to the ADHD cohort receiving dopaminergic medications reduced the risk of myopia by more than half (52%) relative to the untreated ADHD cohort.  

Treatment with two dopaminergic medications reduced the risk by well over two-thirds (72%) relative to the untreated ADHD cohort. 

There were no significant differences between methylphenidate, atomoxetine, and clonidine. Each reduced risk by about 50%. 

The team did not directly compare the ADHD cohort receiving dopaminergic medications with the non-ADHD cohort. But if there were 122 cases of myopia in the ADHD cohort for every 100 cases in the non-ADHD cohort, and dopaminergic medications halved the cases in the ADHD cohort to about 60, that would represent a roughly 40% reduction in myopia risk relative to the non-ADHD cohort. 

The team concluded, “our research indicates that pharmacologically treated ADHD children have a reduced risk of myopia. Conversely, untreated ADHD children are at a heightened risk relative to those without ADHD. Moreover, the cumulative effects of ADHD medications were found to notably decrease myopia incidence, emphasizing the protective influence of dopaminergic modulation in these interventions.” 

The Take-Away:

Children with untreated ADHD are more likely to develop myopia, but those receiving dopaminergic medications had a substantially lower risk. The findings suggest that ADHD medications may help protect against myopia by boosting dopamine signaling. More research is needed before firmly drawing this conclusion, but this research could open the door to new approaches for preventing myopia in at-risk children.

December 8, 2025

Two New Meta-analyses Point to Benefits of Transcranial Direct Current Stimulation

Background: 

ADHD treatment includes medication, behavioral therapy, dietary changes, and special education. Stimulants are usually the first choice but may cause side effects like appetite loss and stomach discomfort, leading some to stop using them. Cognitive behavioral therapy (CBT) is effective but not always sufficient on its own. Research is increasingly exploring non-drug options, such as transcranial direct current stimulation (tDCS), which may boost medication effectiveness and improve results. 

What is tDCS?

tDCS delivers a weak electric current (1.0–2.0 mA) via scalp electrodes to modulate brain activity, with current flowing from anode to cathode. Anodal stimulation increases neuronal activity, while cathodal stimulation generally inhibits it, though effects vary by region and neural circuitry. The impact of tDCS depends on factors such as current intensity, duration, and electrode shape. It targets cortical areas, often stimulating the dorsolateral prefrontal cortex for ADHD due to its role in cognitive control. Stimulation of the inferior frontal gyrus has also been shown to improve response inhibition, making it another target for ADHD therapy. 

There is an ongoing debate about how effective tDCS is for individuals with ADHD. One study found that applying tDCS to the left dorsolateral prefrontal cortex can help reduce impulsivity symptoms in ADHD, whereas another study reported that several sessions of anodic tDCS did not lead to improvements in ADHD symptoms or cognitive abilities.  

New Research:

Two recent meta-analyses have searched for a resolution to these conflicting findings. Both included only randomized controlled trials (RCTs) using either sham stimulation or a waitlist for controls. 

Each team included seven studies in their respective meta-analyses, three of which appeared in both. 

Both Wang et al. (three RCTs totaling 97 participants) and Wen et al. (three RCTs combining 121 participants) reported very large effect size reductions in inattention symptoms from tDCS versus controls. There was only one RCT overlap between them. Wang et al. had moderate to high  variation (heterogeneity) in individual study outcomes, whereas Wen et al. had virtually none. There was no indication of publication bias. 

Whereas Wen et al.’s same three RCTs found no significant reduction in hyperactivity/impulsivity symptoms, Wang et al. combined five RCTs with 221 total participants and reported a medium effect size reduction in impulsivity symptoms. This time, there was an overlap of two RCTs between the studies. Wen et al. had no heterogeneity, while Wang et al. had moderate heterogeneity. Neither showed signs of publication bias.  

Turning to performance-based tasks, Wang et al. reported a medium effect size improvement in attentional performance from tDCS over controls (three RCTs totaling 136 participants), but no improvement in inhibitory control (five RCTs combining 234 persons). 

Wang et al. found no significant difference in adverse events (four RCTs combining 161 participants) between tDCS and controls, with no heterogeneity. Wen et al. found no significant difference in dropout rates (4 RCTs totaling 143 individuals), again with no heterogeneity.  

Wang et al. concluded, “tDCS may improve impulsive symptoms and inattentive symptoms among ADHD patients without increasing adverse effects, which is critical for clinical practice, especially when considering noninvasive brain stimulation, where patient safety is a key concern.” 

Wen et al. further concluded, “Our study supported the use of tDCS for improving the self-reported symptoms of inattention and objective attentional performance in adults diagnosed with ADHD. However, the limited number of available trials hindered a robust investigation into the parameters required for establishing a standard protocol, such as the optimal location of electrode placement and treatment frequency in this setting. Further large-scale double-blind sham-controlled clinical trials that include assessments of self-reported symptoms and performance-based tasks both immediately after interventions and during follow-up periods, as well as comparisons of the efficacy of tDCS targeting different brain locations, are warranted to address these issues.” 

The Take-Away: 

Previous studies have shown mixed results on the benefits of this therapy on ADHD. These new findings suggest that tDCS may hold some real promise for adults with ADHD. While the technique didn’t meaningfully shift hyperactivity or impulsivity, it was well-tolerated and showed benefit, especially in self-reported symptoms. However, with only a handful of trials to draw from, it would be a mistake to suggest tDCS as a standard treatment protocol. Larger, well-designed studies are the next essential step to clarify where, how, and how often tDCS works best.