August 29, 2025

Population Study Finds Vastly Increased ADHD Medication Prescribing is Associated With Declining Overall Risk Reduction Benefits

The Background: 

Randomized clinical trials have shown ADHD medications are effective in reducing core ADHD symptoms. Moreover, large observational studies indicate that these medications are associated with lower risks of real-world outcomes, including injuries, crime, transport crashes, suicide attempts, and unnatural-cause mortality. 

Sweden’s ADHD medication use has soared. From 2006 to 2020, children’s use rose almost fivefold, and adults' use more than tenfold. This places Sweden among the highest globally in ADHD prescriptions. 

Research indicates that rising prescription rates are due to changes in diagnostic criteria and their interpretation, parental perception, and greater awareness of ADHD, rather than an actual increase in its prevalence. 

Sweden has a single-payer health insurance system that covers virtually its entire population, as well as a system of national registers that link health care records to other population databases.  

The Study:

A research team based in Sweden used that data to explore how the impact of ADHD medication on self-harm, injuries, traffic crashes, and crime has evolved with the dramatic increase in ADHD prescription rates. The team hypothesized that effects would decrease as medications were prescribed to a broader group of patients, including those with fewer impairments and risky behaviors who might not derive as much benefit from pharmacotherapy. 

The team identified all individuals aged 4 to 64 who were prescribed ADHD medication and living in Sweden in the fifteen years from 2006 through 2020. From this base cohort, they selected four specific cohorts for self-harm, unintentional injury, traffic crashes, and crime, consisting of individuals who experienced at least one relevant event during the study period. 

They used a self-controlled case series (SCCS) design to explore the link between ADHD medication use and outcomes. This approach allows individuals to serve as their own controls, accounting for confounders like genetics, socioeconomic status, or other constant characteristics during follow-up. 

A non-treatment period was defined as a gap of 30 days or more between two consecutive treatment periods. To examine the link between ADHD medication use and outcomes, the team divided follow-up time into consecutive periods for each individual. A new period began after a treatment switch. They estimated incidence rate ratios (IRRs) to compare the outcome event rates during medicated periods with non-medicated periods for the same individual. 

The team examined how ADHD medication outcomes varied with prescription prevalence across three periods: 2006-2010, 2011-2015, and 2016-2020, during which ADHD medication use continuously increased. 

The overall cohort encompassed almost a quarter million ADHD medication users: just over 57,000 for 2006-2010, just over 127,000 for 2011-2015, and slightly over 200,000 for 2016-2020. 

The Results:

ADHD medication use was linked to significantly lower rates of all studied outcomes during the study period. However, as prescription rates increased five to tenfold in the population, the strongest association for reduction in self-harm was observed between 2006 to 2010 (23% reduction in incidence rate) and was slightly reduced (below 20%) in the two more recent periods, though this change was not statistically significant.  

On the other hand, there was a significant decreasing trend in the reduction of incidence rate ratios for unintentional injury, with a 13% reduction in incidence rate in 2006-2010 decreasing over the two more recent periods to half that amount, 7%. For traffic crashes, a 29% reduction in incidence rate significantly diminished by more than half, to 13%. For crime, a 27% reduction in incidence rate from medication use significantly declined to 16%. 

When considering methylphenidate prescriptions only, these effects were partially attenuated for crime. A 28% reduction in the incidence rate for crime in 2006-2010 dropped to 19% in the two most recent periods, but the trend was not statistically significant. Nevertheless, there were no significant differences from the results in the larger cohort in any of the other categories.   

The Interpretation:

These outcomes were consistent with the team’s hypothesis. The researchers concluded, “While ADHD medications are consistently associated with reduced risk of serious real-world outcomes, the magnitude of these associations have decreased over time alongside rising prescription rates. This underscores the importance of continuously evaluating medication use in different patient populations.” 

Lin Li, David Coghill, Arvid Sjölander, Honghui Yao, Le Zhang, Ralf Kuja-Halkola, Isabell Brikell, Paul Lichtenstein, Brian M. D’Onofrio, Henrik Larsson, and Zheng Chang, “Increased Prescribing of Attention-Deficit/Hyperactivity Disorder Medication and Real-World Outcomes Over Time,” JAMA Psychiatry (2025), https://doi.org/10.1001/jamapsychiatry.2025.1281.

Related posts

What is Evidenced-Based Medicine?

What is Evidenced-Based Medicine?

With the growth of the Internet, we are flooded with information about attention deficit hyperactivity disorder from many sources, most of which aim to provide useful and compelling "facts" about the disorder.  But, for the cautious reader, separating fact from opinion can be difficult when writers have not spelled out how they have come to decide that the information they present is factual. 

My blog has several guidelines to reassure readers that the information they read about ADHD is up-to-date and dependable. They are as follows:

Nearly all the information presented is based on peer-reviewed publications in the scientific literature about ADHD. "Peer-reviewed" means that other scientists read the article and made suggestions for changes and approved that it was of sufficient quality for publication. I say "nearly all" because in some cases I've used books or other information published by colleagues who have a reputation for high-quality science.

When expressing certainty about putative facts, I am guided by the principles of evidence-based medicine, which recognizes that the degree to which we can be certain about the truth of scientific statements depends on several features of the scientific papers used to justify the statements, such as the number of studies available and the quality of the individual studies. For example, compare these two types of studies.  One study gives drug X to 10 ADHD patients and reported that 7 improved.  Another gave drug Y to 100 patients and a placebo to 100 other patients and used statistics to show that the rate of improvement was significantly greater in the drug-treated group. The second study is much better and much larger, so we should be more confident in its conclusions. The rules of evidence are fairly complex and can be viewed at the Oxford Center for Evidenced Based Medicine (OCEBM;http://www.cebm.net/).


The evidenced-based approach incorporates two types of information: a) the quality of the evidence and b) the magnitude of the treatment effect. The OCEBM levels of evidence quality are defined as follows (higher numbers are better:

  1. Mechanism-based reasoning.  For example, some data suggest that oxidative stress leads to ADHD, and we know that omega-3 fatty acids reduce oxidative stress. So there is a reasonable mechanism whereby omega-3 therapy might help ADHD people.
  2. Studies of one or a few people without a control group, or studies that compare treated patients to those that were not treated in the past.

Non-randomized, controlled studies.    In these studies, the treatment group is compared to a group that receives a placebo treatment, which is a fake treatment not expected to work.  

  1. Non-randomized means that the comparison might be confounded by having placed different types of patients in the treatment and control groups.
  2. A single randomized trial.  This type of study is not confounded.
  3. Systematic review and meta-analysis of randomized trials. This means that many randomized trials have been completed and someone has combined them to reach a more accurate conclusion.

It is possible to have high-quality evidence proving that a treatment works but the treatment might not work very well. So it is important to consider the magnitude of the treatment effect, also called the "effect size" by statisticians. For ADHD, it is easiest to think about ranking treatments on a ten-point scale. The stimulant medications have a quality rating of 5 and also have the strongest magnitude of effect, about 9 or 10.Omega-3 fatty acid supplementation 'works' with a quality rating of 5, but the score for the magnitude of the effect is only 2, so it doesn't work very well. We have to take into account patient or parent preferences, comorbid conditions, prior response to treatment, and other issues when choosing a treatment for a specific patient, but we can only use an evidence-based approach when deciding which treatments are well-supported as helpful for a disorder.

April 23, 2021

ADHD medication and risk of suicide

ADHD medication and risk of suicide

A Chinese research team performed two types of meta-analyses to compare the risk of suicide for ADHD patients taking ADHD medication as opposed to those not taking medication.

The first type of meta-analysis combined six large population studies with a total of over 4.7 million participants. These were located on three continents - Europe, Asia, and North America - and more specifically Sweden, England, Taiwan, and the United States.

The risk of suicide among those taking medication was found to be about a quarter less than for unmediated individuals, though the results were barely significant at the 95 percent confidence level (p = 0.49, just a sliver below the p = 0.5 cutoff point). There were no significant differences between males and females, except that looking only at males or females reduced sample size and made results non-significant.

Differentiating between patients receiving stimulant and non-stimulant medications produced divergent outcomes. A meta-analysis of four population studies covering almost 900,000 individuals found stimulant medications to be associated with a 28 percent reduced risk of suicide. On the other hand, a meta-analysis of three studies with over 62,000 individuals found no significant difference in suicide risk for non-stimulant medications. The benefit, therefore, seems limited to stimulant medication.

The second type of meta-analysis combined three within-individual studies with over 3.9 million persons in the United States, China, and Sweden. The risk of suicide among those taking medication was found to be almost a third less than for unmediated individuals, though the results were again barely significant at the 95 percent confidence level (p =0.49, just a sliver below the p = 0.5 cutoff point). Once again, there were no significant differences between males and females, except that looking only at males or females reduced the sample size and made results non-significant.

Differentiating between patients receiving stimulant and non-stimulant medications once again produced divergent outcomes. Meta-analysis of the same three studies found a 25 percent reduced risk of suicide among those taking stimulant medications. But as in the population studies, a meta-analysis of two studies with over 3.9 million persons found no reduction in risk among those taking non-stimulant medications.

A further meta-analysis of two studies with 3.9 million persons found no reduction in suicide risk among persons taking ADHD medications for 90 days or less, "revealing the importance of duration and adherence to medication in all individuals prescribed stimulants for ADHD."

The authors concluded, "exposure to non-stimulants is not associated with a higher risk of suicide attempts. However, a lower risk of suicide attempts was observed for stimulant drugs. However, the results must be interpreted with caution due to the evidence of heterogeneity ..."

December 13, 2021

Unmedicated Adult ADHD Linked to Dementia in Population Study

Background:

Noting that “the association between adult ADHD and dementia risk remains a topic of interest because of inconsistent results,” an Israeli study team tracked 109,218 members of a nonprofit Israeli health maintenance organization born between 1933 and 1952 who entered the cohort on January 1, 2003, without an ADHD or dementia diagnosis and were followed up to February 28, 2020. 

Israeli law forbids nonprofit HMOs from turning anyone away based on demographic factors,  health conditions, or medication needs, thereby limiting sample selection bias.  

The estimated prevalence of dementia in this HMO, as diagnosed by geriatricians, neurologists, or psychiatrists, is 6.6%. This closely matches estimates in Western Europe (6.9%) and the United States (6.5%). 

Method:

The team considered, and adjusted for, numerous covariates: age, sex, socioeconomic status, smoking, depression, obesity, chronic obstructive pulmonary disease, hypertension, atrial fibrillation, heart failure, ischemic heart disease, cerebrovascular disease, diabetes, Parkinson’s disease, traumatic brain injury, migraine, mild cognitive impairment, psychostimulants. 

With these adjustments, individuals diagnosed with ADHD were almost three times as likely to be subsequently diagnosed with dementia as those without ADHD. Men with ADHD were two and a half times more likely to be diagnosed with dementia, whereas women with ADHD were over three times more likely, than non-ADHD peers. 

More concerning still, persons with ADHD were 5.5 times more likely to be subsequently diagnosed with early onset dementia, as opposed to 2.4 times more likely to be diagnosed with late onset dementia. 

On the other hand, the team found no significant difference in rates of dementia between individuals with ADHD who were being treated with stimulant medications and individuals without ADHD. Those with untreated ADHD had three times the rate of dementia. The team nevertheless cautioned, “Due to the underdiagnosis of dementia as well as bidirectional misdiagnosis, this association requires further study before causal inference is plausible.” 

Conclusions and Relevance:

This study reinforces existing evidence that adult ADHD is associated with an increased risk of dementia. Notably, the increased risk was not observed in individuals receiving psychostimulant medication, however the mechanism behind this association is not clear.

These findings underscore the importance of reliable ADHD assessment and management in adulthood. They also highlight the need for further study into the link between stimulant medications and the decreased risk of dementia.

 

...

Struggling to get the care you need to manage your ADHD? Support The ADHD Evidence Project and get this step-by-step guide to getting the treatment you deserve: https://bit.ly/41gIQE9

February 25, 2025

Population Study Links ADHD Medication with Reduced Criminality, Suicides, Automotive Crashes, Substance Abuse

Many studies have shown that ADHD is associated with increased risks of suicidal behavior, substance misuse, injuries, and criminality. As we often discuss in our blogs, treatments for ADHD include medication and non-medication options, such as CBT (Cognitive Behavioral Therapy). While non-drug approaches are often used for young children or mild cases of ADHD, medications – both stimulants and non-stimulants – are common for adolescents and adults. 

Global prescriptions for ADHD drugs have risen significantly in recent years, raising questions about their safety and effectiveness. Randomized controlled trials have demonstrated that medication can help reduce the core symptoms of ADHD. However, research from these trials still offers limited or inconclusive insights into wider and more significant clinical outcomes, such as suicidal behavior and substance use disorder.

An international study team conducted a nationwide population study using the Swedish national registers. Sweden has a single-payer national health insurance system, which covers nearly every resident, enabling such studies. The researchers examined all Swedish residents aged 6 to 64 who received their first ADHD diagnosis between 2007 and 2018. Analyses of criminal behavior and transport accidents focused on a subgroup aged 15 to 64, since individuals in Sweden must be at least 15 years old to be legally accountable for crimes or to drive.

The team controlled for confounding factors, including demographics (age at ADHD diagnosis, calendar year, sex, country of birth, highest education (using parental education for those under 25), psychiatric and physical diagnoses, dispensations of psychotropic drugs, and health care use (outpatient visits and hospital admissions for both psychiatric and non-psychiatric reasons).

Time-varying covariates from the previous month covered diagnoses, medication dispensations, and healthcare use. During the study, ADHD treatments licensed in Sweden included amphetamine, atomoxetine, dexamphetamine, guanfacine, lisdexamphetamine, and methylphenidate.

After accounting for covariates, individuals diagnosed with ADHD who received medication treatment showed better outcomes than those who did not. Specifically:

-Suicidal behaviors dropped by roughly 15% in both first-time and recurrent cases.

-Initial criminal activity decreased by 13%, with repeated offences falling by 25%.

-Substance abuse initiation declined by 15%, while recurring substance abuse was reduced

by 25%.

-First automotive crashes were down 12%, and subsequent crashes fell by 16%.

There was no notable reduction in first-time accidental injuries, and only a marginally significant 4% decrease in repeated injuries.

The team concluded, “Drug treatment for ADHD was associated with beneficial effects in reducing the risks of suicidal behaviours, substance misuse, transport accidents, and criminality, but not accidental injuries when considering first event rate. The risk reductions were more pronounced for recurrent events, with reduced rates for all five outcomes.”

Meta-analysis of Non-invasive Brain Stimulation Finds Limited Evidence of Efficacy

Background: 

Pharmacotherapies, such as methylphenidate, are highly effective for short-term ADHD management, but issues remain with medication tolerability and adherence. Some patients experience unwanted side effects from stimulant medications, leaving them searching for alternative ADHD treatments. Alternative treatments such as cognitive training, behavioral therapies, psychological interventions, neurofeedback, and dietary changes have, so far, shown limited success. Thus, there is a critical need for non-pharmacological options that boost neurocognitive performance and address core ADHD symptoms.

First— What Are NIBS (Non-Invasive Brain Stimulation) Techniques?

Non-invasive brain stimulation (NIBS) techniques, including transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS), transcranial alternating current stimulation (tACS), and repetitive transcranial magnetic stimulation (rTMS) are generating growing attention within the scientific community. 

NIBS techniques are methods that use external stimulation, such as magnets or electrical currents, to affect brain activity without any invasive procedures. In transcranial alternating current stimulation (tACS), for example, small electrodes are placed on the scalp of the patient, and a weak electrical current is administered. 

The theory behind these techniques is that when a direct current is applied between two or more electrodes placed on specific areas of the head, it makes certain neurons more or less likely to fire. This technique has been successfully used to treat conditions like depression and anxiety, and to aid recovery from stroke or brain injury. 

The Study: 

Previous meta-analyses have produced conflicting indications of efficacy. A Chinese research team consisting of sports and rehabilitative medicine professionals has just published a network meta-analysis to explore this further, through direct comparison of five critical outcome domains: inhibitory control, working memory, cognitive flexibility, inattention, hyperactivity and impulsivity.

To be included, randomized controlled trials needed to have participants diagnosed with ADHD, use sham control groups, and assess ADHD symptoms and executive functions – such as inhibitory control, working memory, cognitive flexibility, inattention, hyperactivity, and impulsivity – using standardized tests.

A total of thirty-seven studies encompassing 1,615 participants satisfied the inclusion criteria. It is worth noting, however, that the authors did not specify the number of randomized controlled trials nor the number of participants included in each arm of the network meta-analysis.

Furthermore, the team stated, “We checked for potential small study effects and publication bias by conducting comparison-adjusted funnel plots,” but did not share their findings. They also did not provide information on outcome variation (heterogeneity) among the RCTs.

Results:

Ultimately, none of the interventions produced significant improvements in ADHD symptoms, whether in inattention symptoms or hyperactivity/impulsivity symptoms.  Likewise, none of the interventions produced significant improvements in inhibitory control. Some tDCS interventions enhanced working memory and cognitive flexibility, but details about trial numbers and participants were missing. The team concluded, “none of the NIBS interventions significantly improved inhibitory control compared to sham controls. … In terms of working memory, anodal tDCS over the left DLPFC plus cathodal tDCS over the right DLPFC … and anodal tDCS over the right inferior frontal cortex (rIFC) plus cathodal tDCS over the right supraorbital area ... were associated with significant improvements compared to sham stimulation. For cognitive flexibility, only anodal tDCS over the left DLPFC plus cathodal tDCS over the right supraorbital area demonstrated a statistically significant benefit relative to sham. ... Compared to the sham controls, none of the NIBS interventions significantly improved inattention. ... Compared to the sham controls, none of the NIBS interventions significantly improved hyperactivity and impulsivity.”

How Should We Interpret These Results?

In a word, skeptically.

If one were to read just the study’s abstract, which states, “The dual-tDCS and a-tDCS may be considered among the preferred NIBS interventions for improving cognitive function in ADHD”, it might seem that the takeaway from this study is that this combination of brain stimulation techniques might be a viable treatment option for those with ADHD. Upon closer inspection, however, the results do not suggest that any of these methods significantly improve ADHD symptoms. Additionally, this study suffers from quite a few methodological flaws, so any results should be viewed critically.

October 31, 2025

Meta-analysis of Transcranial Direct Current Stimulation Still Yields Little Sign of Efficacy

Background:

Despite recommendations for combined pharmacological and behavioral treatment in childhood ADHD, caregivers may avoid these options due to concerns about side effects or the stigma that still surrounds stimulant medications. Alternatives like psychosocial interventions and environmental changes are limited by questionable effectiveness for many patients. Increasingly, patients and caregivers are seeking other therapies, such as neuromodulation – particularly transcranial direct current stimulation (tDCS). 

tDCS seeks to enhance neurocognitive function by modulating cognitive control circuits with low-intensity scalp currents. There is also evidence that tDCS can induce neuroplasticity. However, results for ADHD symptom improvement in children and adolescents are inconsistent. 

The Method:

To examine the evidence more rigorously, a Taiwanese research team conducted a systematic search focusing exclusively on randomized controlled trials (RCTs) that tested tDCS in children and adolescents diagnosed with ADHD. They included only studies that used sham-tDCS as a control condition – an essential design feature that prevents participants from knowing whether they received the active treatment, thereby controlling for placebo effects. 

The Results:

Meta-analysis of five studies combining 141 participants found no improvement in ADHD symptoms for tDCS over sham-TDCS. That held true for both the right and left prefrontal cortex. There was no sign of publication bias, nor of variation (heterogeneity) in outcomes among the RCTs.  

Meta-analysis of six studies totaling 171 participants likewise found no improvement in inattention symptoms, hyperactivity symptoms, or impulsivity symptoms for tDCS over sham-TDCS. Again, this held true for both the right and left prefrontal cortex, and there was no sign of either publication bias or heterogeneity. 

Most of the RCTs also performed follow-ups roughly a month after treatment, on the theory that induced neuroplasticity could lead to later improvements. 

Meta-analysis of four RCTs combining 118 participants found no significant improvement in ADHD symptoms for tDCS over sham-TDCS at follow-up. This held true for both the right and left prefrontal cortex, with no sign of either publication bias or heterogeneity. 

Meta-analysis of five studies totaling 148 participants likewise found no improvement in inattention symptoms or hyperactivity symptoms for tDCS over sham-TDCS at follow-up. AS before, this was true for both the right and left prefrontal cortex, with no sign of either publication bias or heterogeneity. 

The only positive results came from meta-analysis of the same five studies, which reported a medium effect size improvement in impulsivity symptoms at follow-up. Closer examination showed no improvement from stimulation of the right prefrontal cortex, but a large effect size improvement from stimulation of the left prefrontal cortex

Interpretation: 

It is important to note that the one positive result was from three RCTs combining only 90 children and adolescents, a small sample size. Moreover, when only one of sixteen combinations yields a positive outcome, that begins to look like p-hacking for a positive result. 

In research, scientists use something called a “p-value” to determine if their findings are real or just due to chance. A p-value below 0.05 (or 5%) is considered “statistically significant,” meaning there's less than a 5% chance the result happened by pure luck. 

When testing twenty outcomes by this standard, one would expect one to test positive by chance even if there is no underlying association. In this case, one in 16 comes awfully close to that. 

To be sure, the research team straightforwardly reported all sixteen outcomes, but offered an arguably over-positive spin in their conclusion: “Our study only showed tDCS-associated impulsivity improvement in children/adolescents with ADHD during follow-ups and anode placement on the left PFC. ... our findings based on a limited number of available trials warrant further verification from large-scale clinical investigations.” 

October 24, 2025