Background:
Noting that “Previous research has demonstrated that attention significantly influences various domains such as language, literacy, and mathematics, making it a crucial determinant of academic achievement,” an international study team performed a comprehensive search of the peer-reviewed medical literature for studies evaluating effects of physical activity on attention.
The Study:
The team’s meta-analysis of ten studies with a combined total of 474 participants found moderate reductions in attention problems following physical activity. They found no significant evidence of publication bias, but there was considerable variation in outcomes between studies (heterogeneity).
To tease out the reasons for this variability, the team looked at specific attributes of the physical activity regimens used in the studies.
The seven studies with 168 participants that involved mentally engaging physical activity reported large reductions in attention problems, whereas the three studies with 306 persons that used aerobic exercise found no reduction whatsoever. Heterogeneity in the former was reduced, in the latter all but disappearing.
Comparing studies with other interventions as control groups (6 studies, 393 participants) with those with no intervention as control (4 studies, 81 participants), the former reported only small improvements in attention problems, while the latter reported large improvements.
Duration of physical activity made little difference. The four studies with physical activity of an hour or more reported better outcomes than the six with less than an hour, but the difference was not significant.
Greater frequency did make a difference, but in a counterintuitive way. The seven studies with one or two physical activity interventions per week (162 participants) reported large reductions in attention problems, whereas the three studies with three or more interventions per week (312 participants) showed no improvement.
Conclusion:
The authors concluded, “Our study suggests that cognitively engaging exercise is more effective in improving attention problems in school-aged children with ADHD.” Moreover, “the benefits of improved attention in school-age children with ADHD are not necessarily positively correlated with higher frequency and longer duration of physical activity.” Also keep in mind that exercise, while important for all children, should not replace medical and psychological treatments for the disorder.
The team of researchers found that pharmacological treatment of adults with diagnoses of ADHD and ASD seem to be just as successful as the pharmacological treatment of adults with only ADHD.
Autism spectrum disorder (ASD) is frequently comorbid with ADHD. Among adults with ADHD, as many as half are reported to also have ASD.
A Dutch team set out to answer two questions:
This was a retrospective study, using well-documented medical records, of the effects of drug treatment with methylphenidate (MPH), dexamphetamine (DEX), atomoxetine (ATX), bupropion, or modafinil.
The researchers compared 60 adults with comorbid ASD and ADHD to 226 adults with only ADHD. ADHD symptoms were scored using the Conner's ADHD Rating Scale: Self Report-Short Version (CAARS: S-S). Side effects of ADHD medication were measured using either a 13-item or 20-item checklist with 4-point scales for item response. Researchers also tracked changes in body weight, blood pressure, and heart rate.
Following treatment, ADHD symptoms among the comorbid group declined by a quarter, and among the ADHD-only group by almost a third. There was no significant difference between men and women. Controlling for age, gender, and ADHD subtype, a comorbid diagnosis of ASD also did not significantly affect ADHD symptom reduction.
Turning to side effects, in the ADHD+ASD group, there were significant increases in decreased appetite and weight loss, and decreases in agitation, anxiety, and sadness/unhappiness. In the ADHD-only group, there were significant increases in decreased appetite, weight loss, and dry mouth, and decreases in sleeping disorder, nervousness, agitation, anxiety, and sadness/unhappiness. Yet there were no significant differences between the two groups. Side effects increased and decreased similarly in both. Likewise, there were no significant differences between the groups in changes in heart rate and blood pressure. The only significant difference in medication dosage was for bupropion, which was higher in the ADHD+ASD group, though without any sign of difference in side effects.
The authors concluded that this retrospective study showed pharmacological treatment of adults with diagnoses of ADHD and ASD to be just as successful as the pharmacological treatment of adults with only ADHD, but cautioned that a randomized controlled trial should be conducted to evaluate the effectiveness and possible side effects of pharmacological treatment for ADHD in patients with ASD more reliably.
ADHD is underdiagnosed and most cases of ADHD in adults are not being diagnosed by clinicians.
A cohort study looked at over five million adults and over 850,000 children between the ages of five and eleven who received care at Kaiser Permanente Northern California during the ten-year period from the beginning of 2007 through the end of 2016. At any given time, KPNC serves roughly four million persons. It is representative of the population of the region, except for the highest and lowest income strata.
The likelihood of being diagnosed with ADHD dropped sharply with age.
(When compared to 18-24-year-olds):
This matches findings from other studies showing that ADHD diagnoses become less common with age.
Other Factors:
Adults with ADHD were more likely to have other mental health conditions:
The authors speculate that rising rates of diagnosis “could reflect increasing recognition of ADHD in adults by physicians and other clinicians as well as growing public awareness of ADHD during the decade under study.” Turning to the notable differences by ethnicity, they note, “Racial/ethnic differences could also reflect differential rates of treatment-seeking or access to care. … Racial/ethnic background is known to play an important role in opinions on mental health services, health care utilization, and physician preferences. In addition, rates of diagnosis- seeking to obtain stimulant medication for non-medical use may be more common among white vs nonwhite patients.” They conclude, “greater consideration must be placed on cultural influences on health care seeking and delivery, along with an increased understanding of the various social, psychological, and biological differences among races/ethnicities as well as culturally sensitive approaches to identify and treat ADHD in the total population.”
The study highlights that many cases of adult ADHD go undiagnosed. Research shows about 3% of adults worldwide have ADHD, but this study found that less than 1% are diagnosed by doctors. This points to the need for better training for clinicians to recognize, diagnose, and treat ADHD in adults. It also emphasizes the importance of understanding cultural factors that affect how people seek and receive care.
Sleep disorders are one of the most commonly self-reported comorbidities of adults with ADHD, affecting 50 to 70 percent of them. A team of British researchers set out to see whether this association could be further confirmed with objective sleep measures, using cognitive function tests and electroencephalography (EEG).
Measured as theta/beta ratio, EEG slowing is a widely used indicator in ADHD research. While it occurs normally in non-ADHD adults at the conclusion of a day, during the day it signals excessive sleepiness, whether from obstructive sleep apnea or neurodegenerative and neurodevelopmental disorders. Coffee reverses EEG slowing, as do ADHD stimulant medications.
Study participants were either on stable treatment with ADHD medication (stimulant or non-stimulant medication) or on no medication. Participants had to refrain from taking any stimulant medications for at least 48 hours prior to taking the tests. Persons with IQ below 80 or with recurrent depression or undergoing a depressive episode were excluded.
The team administered a cognitive function test, The Sustained Attention to Response Task (SART). Observers rated on-task sleepiness using videos from the cognitive testing sessions. They wired participants for EEG monitoring.
Observer-rated sleepiness was found to be moderately higher in the ADHD group than in controls. Although sleep quality was slightly lower in the sleepy group than in the ADHD group, and symptom severity slightly greater in the ADHD group than the sleepy group, neither difference was statistically significant, indicating extensive overlap.
Omission errors in the SART were strongly correlated with sleepiness level, and the strength of this correlation was independent of ADHD symptom severity. EEG slowing in all regions of the brain was more than 50 percent higher in the ADHD group than in the control group and was highest in the frontal cortex.
Treating the sleepy group as a third group, EEG slowing was highest for the ADHD group, followed closely by the sleepy group, and more distantly by the neurotypical group. The gaps between the ADHD and sleepy groups on the one hand, and the neurotypical group on the other, were both large and statistically significant, whereas the gap between the ADHD and sleepy groups was not. EEG slowing was both a significant predictor of ADHD and of ADHD symptom severity.
The authors concluded, These findings indicate that the cognitive performance deficits routinely attributed to ADHD are largely due to on-task sleepiness and not exclusively due to ADHD symptom severity. we would like to propose a simple working hypothesis that daytime sleepiness plays a major role in cognitive functioning of adults with ADHD. As adults with ADHD are more severely sleep deprived compared to neurotypical control subjects and are more vulnerable to sleep deprivation, in various neurocognitive tasks they should manifest larger sleepiness-related reductions in cognitive performance. One clear testable prediction of the working hypothesis would be that carefully controlling for sleepiness, time of day, and/or individual circadian rhythms would result in a substantial reduction in the neurocognitive deficits in replications of classic ADHD studies.