February 11, 2022
Methylphenidate, a psychostimulant, is among the drugs most frequently prescribed to children with ADHD.
Using magnetic resonance imaging(MRI), studies have shown that as children mature, those with ADHD differ from controls in developing regionally thinner cortices (the folded outer layer of the cerebrum that is essential to rational thought) and smaller lower basal ganglia(structures linked to the thalamus in the base of the brain and involved in the coordination of movement). The cortical differences were found in the right medial frontal motor region, the left middle/inferior frontal gyrus, and the right posterior parieto-occipital region in children with ADHD who were not taking psychostimulants.
A Dutch/Norwegian team of researchers conducted a randomized, double-blind, placebo-controlled trial with 96 males recruited from Dutch clinical programs. 48 were boys aged 10-12 years, and 47 were men between the ages of 23 and 40. None had previously been on methylphenidate. There were no significant differences in baseline age, ADHD symptom severity, estimated intelligence quotient, the proportion of right-handedness, or region of interest brain characteristics between the placebo and medication groups.
The trial was carried out during the standard 17-week waiting list time for evaluation and treatment to begin so that those receiving a placebo during the trial would not ultimately be at a disadvantage. The same MRI scanner was used for all measurements, both before and after treatment.
Among the boys, the methylphenidate group showed increased thickness in the right medial cortex, while the placebo group showed cortical thinning. In adults, both groups showed cortical thinning. When converted into an estimated mean rate of change in cortical thickness for the right medial cortex, boys taking methylphenidate could expect to lose about 0.01 mm per year, versus about 0.14 mm for boys not on methylphenidate.
In the right posterior cortex, scans also showed reduced thinning in the methylphenidate treatment group, though to a lesser extent. But there was no reduced thinning in the left frontal cortex.
The authors noted several limitations. The sample size was small. Second, "because we did not detect significant relationships between changes in cortical [regions of interest] and changes in symptom severity, the functional significance remains uncertain." Third, the follow-up period was relatively short, not allowing any assessment of the longer-term effects of the medication. Fourth, the differences in effects on the three brain regions examined were uneven, contrary to what had been expected from previous studies. They recommended replication with larger groups and longer follow-ups.
K.B. Walhovd, I.Amlien, A. Schrantee,D.A. Rohani, I. Groote, A. Bjørnerud, A.M. Fjell, and L.Reneman, "Methylphenidate Effects on Cortical Thickness in Children and Adults with Attention-Deficit/Hyperactivity Disorder: A Randomized Clinical Trial," American journal of Neuroradiology(2020)41 (5) 758-765,http://dx.doi.org/10.3174/ajnr.A6560.