June 13, 2025

Study Finds Association Between Childhood ADHD and Poor Dental Health

The Spanish National Health Survey tracks health care outcomes through representative samples of the Spanish population. 

A Spanish research team used survey data to explore the relationship between ADHD symptoms and dental and gum health in a representative sample of 3,402 Spanish children aged 6 to 14.

While previous studies have found associations between ADHD and poor dental health, they have not fully accounted for such important determinants of poor oral health as socioeconomic status, dental hygiene, or diet. 

The team therefore adjusted for sociodemographic factors, lifestyle variables, and oral hygiene behaviors. More specifically, they adjusted for sex, age, social class, parental education, exposure to tobacco smoke, consumption of sweets, consumption of sugary drinks, use of asthma or allergy medication, adequate oral hygiene behavior of children, adherence to regular dental visits, parental adequate oral hygiene behavior, and parental adherence to regular dental visits.

With those adjustments, children with ADHD symptoms had over twice the incidence of dental caries (cavities) as their counterparts without ADHD symptoms.

Tooth extractions and dental restorations also occurred with over 40% greater frequency in children with ADHD symptoms.

Gum bleeding, a sign of gum disease, was more than 60% more common among children with ADHD symptoms than among their non-ADHD peers.

Importantly, excluding children with daily sugar consumption, which left 1,693 children in the sample, made no difference in the outcome for cavities.

Excluding children with poor oral hygiene habits, which left 1,657 children in the sample, those with ADHD had 2.5-fold more caries than their non-ADHD counterparts.

Excluding children of low social class, which left 1,827 children in the sample, those with ADHD had 2.6-fold more caries than their non-ADHD counterparts.

Turning to a different method to address potential confounding factors, the team used nearest-neighbor propensity score matching to create virtual controls. This compared 461 children with ADHD to 461 carefully matched children without ADHD.

This time, children with ADHD symptoms had just under twice the incidence of cavities as their counterparts without ADHD symptoms, but 60% more tooth extractions and about 75% more dental restorations. The difference in gum bleeding became nonsignificant.

Noting that “The increased risk of caries was maintained when the analyses were restricted to middle/high social class families and children with low sugar intake, good oral hygiene behaviors and regular dental visits,” the team concluded, “Children with ADHD symptoms in Spain had worse oral health indicators than those without ADHD symptoms. Our results suggest that the association of ADHD symptoms with caries was independent of socioeconomic level, cariogenic diet, frequency of toothbrushing, and dental visits.”

Lucía Fernández-Arce, José Manuel Martínez-Pérez, Miguel García-Villarino, María Del Mar Fernández-Álvarez, Rubén Martín-Payo, and Alberto Lana, “Symptoms of Attention Deficit Hyperactivity Disorder and Oral Health Problems among Children in Spain,” Caries Research (2025), 59(1):35-45, https://doi.org/10.1159/000541013.

Related posts

Exploring Gut Microbiota and Diet in Autism and ADHD: What Does the Research Say?


In recent years, there has been growing interest in understanding the connection between our gut microbiota (the community of microorganisms in our digestive system) and various neurodevelopmental disorders like autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). A new study by Shunya Kurokawa and colleagues dives deeper into this area, comparing dietary diversity and gut microbial diversity among children with ASD, ADHD, their normally-developing siblings, and unrelated volunteer controls. Let's unpack what they found and what it means.

The Study Setup

The researchers recruited children aged 6-12 years diagnosed with ASD and/or ADHD, along with their non-ASD/ADHD siblings and the unrelated non-ASD/ADHD volunteers. The diagnoses were confirmed using standardized assessments like the Autism Diagnostic Observation Schedule-2 (ADOS-2). The study looked at gut microbial diversity using advanced DNA extraction and sequencing techniques, comparing alpha-diversity indices (which reflect the variety and evenness of microbial species within each gut sample) across different groups. They also assessed dietary diversity through standardized questionnaires.

Key Findings

The study included 98 subjects, comprising children with ASD, ADHD, both ASD and ADHD, their non-ASD/ADHD siblings, and the unrelated controls. Here's what they discovered:

Gut Microbial Diversity: The researchers found significant differences in alpha-diversity indices (like Chao 1 and Shannon index) among the groups. Notably, children with ASD had lower gut microbial diversity compared to unrelated neurotypical controls. This suggests disorder-specific differences in gut microbiota, particularly in children with ASD.

Dietary Diversity: Surprisingly, dietary diversity (assessed using the Shannon index) did not differ significantly among the groups. This finding implies that while gut microbial diversity showed disorder-specific patterns, diet diversity itself might not be the primary factor driving these differences.

What Does This Mean?

The study highlights intriguing connections between gut microbiota and neurodevelopmental disorders like ASD and ADHD. The lower gut microbial diversity observed in children with ASD points towards potential links between gut health and the pathophysiology of ASD. Understanding these connections is crucial for developing targeted therapeutic interventions.

Implications and Future Directions

This research underscores the importance of considering gut microbiota in the context of neurodevelopmental disorders. Moving forward, future studies should account for factors like co-occurrence of ASD and ADHD, as well as carefully control for dietary influences. This will help unravel the complex interplay between gut microbiota, diet, and neurodevelopmental disorders, paving the way for innovative treatments and interventions.

In summary, studies like this shed light on the intricate relationship between our gut health, diet, and brain function. By unraveling these connections, researchers are opening new avenues for understanding and potentially treating conditions like ASD and ADHD.

April 9, 2024

Dose-dependent Association Found Between Childhood General Anesthesia and ADHD

Childhood General Anesthesia and Subsequent Diagnoses of ADHD

In December 2016, the U.S. Food and Drug Administration (FDA) warned “that repeated or lengthy use of general anesthetic and sedation drugs during surgeries or procedures in children younger than 3 years or in pregnant women during their third trimester may affect the development of children’s brains.” The FDA adds, “Health care professionals should balance the benefits of appropriate anesthesia against the potential risks, especially for procedures lasting longer than 3 hours or if multiple procedures are required in children under 3 years,” and “Studies in pregnant and young animals have shown that using these drugs for more than 3 hours caused widespread loss of brain nerve cells.”

That raises a concern that such exposure could lead to increased risk of psychiatric disorders, including ADHD.

Noting “There are inconsistent reports regarding the association between general anesthesia and adverse neurodevelopmental and behavioral disorders in children,” a South Korean study team conducted a nationwide population study to explore possible associations through the country’s single-payer health insurance database that covers roughly 97% of all residents.

The team looked at the cohort of all children born in Korea between 2008 and 2009, and followed them until December 31, 2017. They identified 93,717 children in this cohort who during surgery received general anesthesia with endotracheal intubation (a tube inserted down the trachea), and matched them with an equal number of children who were not exposed to general anesthesia.

The team matched the unexposed group with the exposed group by age, sex, birth weight, residential area at birth, and economic status.

They then assessed both groups for subsequent diagnoses of ADHD.

In general, children exposed to general anesthesia were found to have a 40% greater risk of subsequently being diagnosed with ADHD than their unexposed peers.

This effect was found to be dose dependent by several measures:

  • Duration of surgery: two-to-three-hour surgeries were associated with a 50% greater risk of subsequent ADHD, and surgeries of more than three hours with a 60% greater risk.
  • Number of exposures: two exposures were associated with a 54% increased risk, and three or more exposures with a 67% greater risk.
  • Placement in an Intensive Care Unit was associated with a 60% greater risk of ADHD.

All three measures were highly significant.

The authors concluded, “exposure to general anesthesia with ETI [endotracheal intubation] in children is associated with an increased risk of ADHD … We must recognize the possible neurodevelopmental risk resulting from general anesthesia exposure, inform patients and parents regarding this risk, and emphasize the importance of close monitoring of mental health. However, the risk from anesthesia exposure is not superior to the importance of medical procedures. Specific research is needed for the development of safer anesthetic drugs and doses.”

June 20, 2024

What the MAHA Report Gets Right—and Wrong—About ADHD and Children's Health

The U.S. government released a sweeping document titled The MAHA Report: Making Our Children Healthy Again, developed by the President’s “Make America Healthy Again” Commission. Chaired by public figures and physicians with ties to the current administration, the report presents a broad diagnosis of what it calls a national health crisis among children. It cites rising rates of obesity, diabetes, allergies, mental illness, neurodevelopmental disorders, and chronic disease as signs of a generation at risk.

The report's overarching goal is to shift U.S. health policy away from reactive, pharmaceutical-based care and toward prevention, resilience, and long-term well-being. It emphasizes reforming the food system, reducing environmental chemical exposure, addressing lifestyle factors like physical inactivity and screen overuse, and rethinking what it calls the “overmedicalization” of American children.

While some of the report’s arguments are steeped in political rhetoric and controversial claims—particularly around vaccines and mental health diagnoses—others are rooted in well-established public health science. This blog aims to highlight where the MAHA Report gets the science right, especially as it relates to childhood health and ADHD.

Some of the Good Ideas in the MAHA Report:

Although the MAHA Report contains several debatable assertions, it also outlines six key public health priorities that are well-supported by decades of research. If implemented thoughtfully, these recommendations might make a meaningful difference in the health of American children:

Reduce Ultra-Processed Food (UPF) Consumption

UPFs now make up nearly 70% of children’s daily calories. These foods are high in added sugars, refined starches, unhealthy fats, and chemical additives, but low in nutrients. Studies—including a 2019 NIH-controlled feeding study—show that UPFs promote weight gain, overeating, and metabolic dysfunction.  What can help: Tax incentives for fresh food retailers, improved school meals, front-of-pack labeling, and food industry regulation.

Promote Physical Activity and Limiting Sedentary Time

Most American children don’t get the recommended 60 minutes of physical activity per day. This contributes to obesity, cardiovascular risk, and even mental health issues. Physical activity is known to improve attention, mood, sleep, and self-regulation.   What can help: Mandatory daily PE, school recess policies, walkable community infrastructure, and screen-time education.

Addressing Sleep Deprivation

Teens today sleep less than they did a decade ago, in part due to screen use and early school start times. Sleep loss is linked to depression, suicide risk, poor academic performance, and metabolic problems.  What can help: Later school start times, family education about sleep hygiene, and limits on evening screen exposure.

Improving Maternal and Early Childhood Nutrition

The report indirectly supports actions that are backed by strong evidence: encouraging breastfeeding, supporting maternal whole-food diets, and improving infant nutrition. These are known to reduce chronic disease risk later in life.

What MAHA Says About ADHD:

ADHD is one of the most discussed neurodevelopmental disorders in the MAHA Report, but many of its claims about ADHD are misleading, oversimplified, or inconsistent with decades of scientific evidence, much of which is described in the International Consensus Statement on ADHDand other references given below.

✔️ Accurate: ADHD diagnoses are increasing.

This is true. Diagnosis rates have risen over the past two decades, due in part to better recognition, broadened diagnostic criteria, and changes in healthcare access.  Diagnosis rates in some parts of the country are too high, but we don’t know why.  That should be addressed and investigated.  MAHA attributes increasing diagnoses to ‘overmedicalization’.   That is a hypothesis worth testing but not a conclusion we can draw from available data.

❌ Misleading: ADHD is caused by processed food, screen time, or chemical exposures.

These have been associated with ADHD but have not been documented as causes. ADHD is highly heritable, with genetic factors accounting for 70–80% of the risk.   Unlike genetic studies, environmental risk studies are compromised by confounding variables.   There are good reasons to address these issues but doing so is unlikely to reduce diagnostic rates of ADHD. 

❌ Inaccurate: ADHD medications don’t work long-term.

The report criticizes stimulant use but fails to note that ADHD medications are among the most effective psychiatric treatments, especially when consistently used.  They cite the MTA study’s long term outcome study of kids assigned to medication vs. placebo as showing medications don’t work in the long term.  But that comparison is flawed because during the follow-up period, many kids on medication stopped taking them and many on placebo started taking medications.   Many studies document that medications for ADHD protect against many real-world outcomes such as accidental injuries, substance abuse and even premature death.

How the MAHA Report Could Still Help People with ADHD:

Despite the issues discussed above, the MAHA Report can indirectly help children and adults with ADHD by pushing for systemic changes that reduce ultra-processed food consumption, increase physical activity, and motivate better sleep practices.

In other words, you don’t need to reject the diagnosis of ADHD to support broader changes in how we feed, educate, and care for children. A more supportive, less toxic environment benefits everyone—including those with ADHD.

May 28, 2025

What is An Expert?

What do we mean by expert? In simple terms, an expert possesses in-depth knowledge and specialized training in a particular field. In order to be considered an expert in any field, a person must have both deep knowledge of and competence in their specific area of expertise. Experts have a background that includes education, research, and experience. In the world of mental health and psychology, this typically means formal credentials (a PhD, MD, etc) in addition to years of study, peer-reviewed publications, and/or extensive clinical experience. 

Experts are recognized by their peers (and often by the public) as reliable authorities on a specific topic. Experts usually don’t make big claims without evidence; instead, they cite studies and speak cautiously about what the evidence shows. 

Tip: Those looking for likes and clicks will often speak in absolutes (e.g., “refined sugar makes your ADHD worse, but the Keto Diet will eliminate ADHD symptoms”) while experts will use language that emphasizes evidence (e.g., “research has proven that there is no ‘ADHD Diet’, but some evidence has suggested that certain individuals with ADHD may benefit from such dietary interventions as limiting food coloring or increasing omega fatty acids.”) 

The Double-Edged Sword of Social Media   

Social media has created an incredible opportunity for those with ADHD to gain access to invaluable resources, including the creation of communities by and for those with ADHD. Many people with ADHD report feeling empowered and less alone by connecting with others online. These online social platforms provide a space for those with ADHD to share their own perspectives and their lived experience with the disorder. Both inside and outside of mental health-related communities, social media is a powerful tool for sharing information, reducing stigma, and helping people find community. When someone posts about their own ADHD challenges or tips, it can reassure others that they’re not the only ones facing these issues. This kind of peer support is valuable and affirming.

It is vital for those consuming this media, however, to remember that user-generated content on social media is not vetted or regulated. Short TikTok or Instagram videos are designed to grab attention, not to teach nuance or cite scientific studies. As it turns out, most popular ADHD posts are misleading or overly simplistic, at best. One analysis of ADHD TikTok videos found that over half were found to be “misleading” by professionals. Because social feeds reinforce what we already believe (the “echo chamber” effect, or confirmation bias), we can easily see only content that seems to confirm our own experiences, beliefs, or fears.

Stories aren’t a substitute for expert guidance.

Lived Experience vs. Universal Advice

It’s important to recognize the difference between personal experience and general expertise. Having ADHD makes you an expert on your ADHD, but it does not make you an expert on ADHD for everyone. Personal stories are not scientific facts. Even if someone’s personal journey is true, the same advice or experience may not apply to others. For instance, a strategy that helps one person focus might have no effect– or possibly even a negative effect– on someone else.

Researchers have found that most ADHD content on social media is based on creators’ own experiences, not on systematic research. In one study, almost every TikTok ADHD creator who listed credentials actually just cited their personal story. Worse, about 95% of those videos never noted that their tips might not apply to everyone (journals.plos.org.) In other words, they sound absolute even though they really only reflect one person’s situation. It’s easy to misunderstand the condition if we take those singular experiences as universal facts.

How Real Experts Talk

So how can you tell when someone is speaking from expertise rather than personal experience or hearsay? Experienced professionals usually speak cautiously, rather than in absolutes. They tend to say things like “research suggests,” “some studies show,” or “evidence indicates,” rather than claiming something always or never happens. As one health-communication guide puts it, a sign of a trustworthy source is that they do not speak in absolutes; instead, they use qualifiers like “may,” “might,” or refer to specific studies. For example, an expert might say, “Some people with ADHD may have difficulty with organization,” instead of “ADHD people always lose things.”

Real experts also cite evidence. In science and psychology, experts usually share knowledge through peer-reviewed articles, textbooks, or professional conferences – not just social media posts. Reliable health information is typically backed by references to studies published in reputable journals.

If someone makes a claim online, ask: Do they point to research, or is it just their own testimony? This is why it’s wise to prefer content where the author is a recognized authority (like a doctor or researcher) and where references to scientific studies or official guidelines are provided. In fact, advice from sites ending in “.gov”, “.edu”, or “.org” (government, university, or professional organizations) tends to be more reliable than random blogs. When in doubt, look up who wrote the material and whether it cites peer-reviewed research.

The Take-Away: 

When navigating mental health information online, remember these key points:

  • experts rarely claim absolute truths
  • experts usually have credentials and publications
  • experts speak in precise, cautious language. 

If you see sweeping statements like “This one habit will predict if you have ADHD” or “Eliminating this one food will cure your ADHD symptoms”--- that’s a red flag. Instead, the hallmark of expert advice is a tone of humility (“evidence suggests,” “it appears that,” etc.), clear references to studies or consensus statements, and an acknowledgment that individual differences exist.

At the same time, we need to acknowledge that community voices are incredibly valuable – they help us feel understood and less alone. The goal is not to dismiss personal stories, but to balance them with facts and evidence-based information. Let lived experience spark questions, but verify important advice with credible sources. Follow trusted organizations (for example, the National Institutes of Health, CDC, or ADHD specialist groups) and mental health professionals who communicate carefully. Use the online ADHD community for support and sharing tips, but remember it’s just one piece of the puzzle.

By being a savvy reader (checking credentials, looking for cited evidence, and spotting overgeneralizations), you can make the most of online ADHD content. In doing so, you give yourself both the empathy of community and the accuracy of real expertise. That way, you’ll be well-equipped to separate helpful insights from hype and to keep learning from both personal stories and science-based experts.

January 13, 2026

Rethinking First-Line ADHD Medication: Are Non-Stimulants Being Undervalued?

Stimulant medications have long been considered the default first-line treatment for attention-deficit/hyperactivity disorder (ADHD). Clinical guidelines, prescribing practices, and public narratives all reinforce the idea that stimulants should be tried first, with non-stimulants reserved for cases where stimulants fail or are poorly tolerated.

I recently partnered with leading ADHD researcher Jeffrey Newcorn for a Nature Mental Health commentary on the subject. We argue that this hierarchy deserves reexamination. It is important to note that our position is not anti-stimulant. Rather, we call into question whether the evidence truly supports treating non-stimulants as secondary options, and we propose that both classes should be considered equal first-line treatments.

What the Evidence Really Shows

Stimulants have earned their reputation as the go-to drug of choice for ADHD. They are among the most effective medications in psychiatry, reliably reducing core ADHD symptoms and improving daily functioning when properly titrated and monitored. However, when stimulant and non-stimulant medications are compared more closely, the gap between them appears smaller than commonly assumed.

Meta-analyses often report slightly higher average response rates for stimulants, but head-to-head trials where patients are directly randomized to one medication versus another frequently find no statistically significant differences in symptom improvement or tolerability. Network meta-analyses similarly show that while some stimulant formulations have modest advantages, these differences are small and inconsistent, particularly in adults.

When translated into clinical terms, the advantage of stimulants becomes even more modest. Based on existing data, approximately eight patients would need to be treated with a stimulant rather than a non-stimulant for one additional person to experience a meaningful benefit. This corresponds to only a 56% probability that a given patient will respond better to a stimulant than to a non-stimulant. This difference is not what we would refer to as “clinically significant.” 

How The Numbers Can Be Misleading

One reason non-stimulants may appear less effective is the way efficacy is typically reported. Most comparisons rely on standardized mean differences, a method of averages that may mask heterogeneity of treatment effects. In reality, ADHD medications do not work uniformly across patients.

For example, evidence suggests that response to some non-stimulants, such as atomoxetine, is bimodal: this means that many patients respond extremely well, while others respond poorly, with few in between. When this happens, average effect sizes can obscure the fact that a substantial subgroup benefits just as much as they would from a stimulant. In other words, non-stimulants are not necessarily less effective across the board, but that they are simply different in who they help.

Limitations of Clinical Trials

In our commentary, we also highlight structural issues in ADHD research. Stimulant trials are particularly vulnerable to unblinding, as their immediate and observable physiological effects can reveal treatment assignment, potentially inflating perceived efficacy. Non-stimulants, with slower onset and subtler effects, are less prone to this bias.

Additionally, many randomized trials exclude patients with common psychiatric comorbidities such as anxiety, depression, or substance-use disorders. Using co-diagnoses as exclusion criteria for clinical trials on ADHD medications is nonviable when considering the large number of ADHD patients who also have other diagnoses. Real-world data suggest that a large proportion of individuals with ADHD would not qualify for typical trials, limiting how well results generalize to everyday clinical practice.

Considering the Broader Impact

Standard evaluations of medication tolerability focus on side effects experienced by patients, but this narrow lens misses broader societal consequences. Stimulants are Schedule II controlled substances, which introduces logistical barriers, regulatory burdens, supply vulnerabilities, and administrative strain for both patients and clinicians.

When used as directed, stimulant medications do not increase risk of substance-use disorders (and, in fact, tend to reduce these rates); however, as ADHD awareness has spread and stimulants are more widely prescribed, non-medical use of prescription stimulants has become more widespread, particularly among adolescents and young adults. Non-stimulants do not carry these risks.

Toward Parallel First-Line Options

Non-stimulants are not without drawbacks themselves, however. They typically take longer to work and have higher non-response rates, making them less suitable in situations where rapid results are essential. These limitations, however, do not justify relegating them to second-line status across the board.

This is a call for abandoning a one-size-fits-all approach. Instead, future guidelines should present stimulant and non-stimulant medications as equally valid starting points, clearly outlining trade-offs related to onset, efficacy, misuse risk, and practical burden.

The evidence already supports this shift. The remaining challenge is aligning clinical practice and policy with what the data, and patient-centered care, are increasingly telling us.

January 8, 2026

Patient-Centered Outcomes Research Institute (PCORI) to Fund Landmark ADHD Medication Study

Today, most treatment guidelines recommend starting ADHD treatment with stimulant medications. These medicines often work quickly and can be very effective, but they do not help every child, and they can have bothersome side effects, such as appetite loss, sleep problems, or mood changes. Families also worry about long-term effects, the possibility of misuse or abuse, as well as the recent nationwide stimulant shortages. Non-stimulant medications are available, but they are usually used only after stimulants have not been effective.

This stimulant-first approach means that many patients who would respond well to a non-stimulant will end up on a stimulant medication anyway. This study addresses this issue by testing two different ways of starting medication treatment for school-age children with attention-deficit/hyperactivity disorder (ADHD). We want to know whether beginning with a non-stimulant medicine can work as well as the  “stimulant-first” approach, which is currently used by most prescribers.

From this study, we hope to learn:

  • Is starting with a non-stimulant medication “good enough” compared with starting with a stimulant?
    In other words, when we look at overall improvement in a child’s daily life, not just ADHD symptoms, does a non-stimulant-first approach perform similarly to a stimulant-first approach?
  • Which children do better with which approach?
    Children with ADHD are very different from one another. Some have anxiety, depression, learning problems, or autism spectrum conditions. We want to know whether certain groups of children benefit more from starting with stimulants, and others from starting with non-stimulants.
  • How do the two strategies compare for side effects, treatment satisfaction, and staying on medication?
    We will compare how often children stop or switch medications because of side effects or lack of benefit, and how satisfied children, parents, and clinicians are with care under each strategy.
  • What are the longer-term outcomes over a year?
    We are interested not only in short-term symptom relief, but also in how children are doing months later in school, at home, with friends, and emotionally.

Our goal is to give families and clinicians clear, practical evidence to support a truly shared decision: “Given this specific child, should we start with a stimulant or a non-stimulant?”

Who will be in the study?

We will enroll about 1,000 children and adolescents, ages 6 to 16, who:

  • Have ADHD and are starting or restarting medication treatment, and
  • Are being treated in everyday pediatric and mental health clinics at large children’s hospitals and health systems across the United States.

We will include children with common co-occurring conditions (such as anxiety, depression, learning or developmental disorders) so that the results reflect the “real-world” children seen in clinics, not just highly selected research volunteers.

How will the treatments be assigned?

This is a randomized comparative effectiveness trial, which means:

  • Each child will be randomly assigned (like flipping a coin) to one of two strategies:


    1. Stimulant-first strategy – the clinician starts treatment with a stimulant medication.
    2. Non-stimulant-first strategy – the clinician starts treatment with a non-stimulant medication.
  • Within the assigned class, the clinician and family still choose the specific medicine and dose, and can adjust treatment as they normally would. This keeps the study as close as possible to real-world practice.
  • The randomization is 1:1, so about half the participants will start with stimulants and half with non-stimulants.

Parents and clinicians will know which type of medicine the child is taking, as in usual care. However, the experts who rate how much each child has improved using our main outcome measure will not be told which treatment strategy the child received. This helps keep their ratings unbiased.

What will participants be asked to do?

Each family will be followed for 12 months. We will collect information at:

  • Baseline (before or just as medication is started)
  • Early follow-up (about weeks 3 and 6)
  • Later follow-up (about 3 months, 6 months, and 12 months)

At these times:

  • Parents will complete questionnaires about ADHD symptoms, behavior, emotions, and daily functioning at home and in the community.
  • Teachers will complete brief forms about the child’s behavior and performance at school.
  • Children and teens (when old enough) will complete age-appropriate questionnaires about their own mood, behavior, and quality of life.
  • A specially trained clinical rater, using all available information but blinded to treatment strategy, will give a global rating of how much the child has improved overall, not just in ADHD symptoms.

We will also track:

  • Medication changes (stopping, switching, or adding medicines)
  • Reasons for any changes (side effects, lack of benefit, or other reasons)
  • Any serious side effects or safety concerns

Data will be entered into a secure, HIPAA-compliant research database. Study staff at each site will work closely with families to make participation as convenient as possible, including offering flexible visit schedules and electronic options for completing forms when feasible.

How will we analyze the results?

Using standard statistical methods, we will:

  • Compare the overall improvement of children in the stimulant-first group versus the non-stimulant-first group after 12 months.
  • Look at differences in side effects, discontinuation rates, and treatment satisfaction between the two strategies.
  • Examine which child characteristics (such as age, sex, co-occurring conditions, and baseline severity) are linked to better results with one strategy versus the other.
  • Analyze long-term outcomes, including functioning at home, school, and with peers, and emotional well-being.

All analyses will follow the “intention-to-treat” principle, meaning we compare children based on the strategy they were originally assigned to, even if their medication is later changed. This mirrors real-world decision-making: once you choose a starting strategy, what tends to happen over time?

Why is this study necessary now?

This study addresses a critical, timely gap in ADHD care:

  • Guidelines are ahead of the evidence.
    Existing guidelines almost always recommend stimulants as the first-line medication, yet careful reviews of the evidence show that direct comparisons of stimulant-first versus non-stimulant-first strategies are limited. We do not have strong data to say that starting with stimulants is clearly superior for all children.
  • Real-world children are more complex than those in past trials.
    Most prior medication trials have excluded children with multiple conditions, serious family stressors, or other complexities that are very common in everyday practice. Our pragmatic, multi-site design will include these children and thus produce findings that are directly relevant to front-line clinicians and families.
  • Families and clinicians are asking for alternatives.
    Parents often express worries about stimulant side effects, long-term use, and stigma. Clinicians would like clearer guidance about when a non-stimulant is a reasonable first choice. At the same time, stimulant shortages and concerns about misuse and diversion have exposed the risks of relying almost entirely on one class of medications.
  • The timing is right to influence practice and policy.
    Our team includes parents, youth advocates, frontline clinicians, and national networks that link major children’s hospitals. These partners have helped shape the study from the beginning and will help interpret and share the results. This means that if starting with non-stimulants is found to be similarly effective and safer or more acceptable for some children, practice patterns and guidelines can change rapidly.

In short, this study is needed now to move ADHD medication decisions beyond “one-size-fits-all.” By rigorously comparing stimulant-first and non-stimulant-first strategies in real-world settings, and by focusing on what matters most to children and families overall functioning, side effects, and long-term well-being, we aim to give patients, parents, and clinicians the information they need to choose the best starting treatment for each child.

This project was conceived by Professor Stephen V. Faraone, PhD (SUNY Upstate Medical University, Department of Psychiatry, Syracuse, NY) and Professor Jeffrey H. Newcorn, MD (Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY).   It will be conducted at nine sites across the USA.

January 2, 2026