Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Background:
ADHD treatment includes medication, behavioral therapy, dietary changes, and special education. Stimulants are usually the first choice but may cause side effects like appetite loss and stomach discomfort, leading some to stop using them. Cognitive behavioral therapy (CBT) is effective but not always sufficient on its own. Research is increasingly exploring non-drug options, such as transcranial direct current stimulation (tDCS), which may boost medication effectiveness and improve results.
What is tDCS?
tDCS delivers a weak electric current (1.0–2.0 mA) via scalp electrodes to modulate brain activity, with current flowing from anode to cathode. Anodal stimulation increases neuronal activity, while cathodal stimulation generally inhibits it, though effects vary by region and neural circuitry. The impact of tDCS depends on factors such as current intensity, duration, and electrode shape. It targets cortical areas, often stimulating the dorsolateral prefrontal cortex for ADHD due to its role in cognitive control. Stimulation of the inferior frontal gyrus has also been shown to improve response inhibition, making it another target for ADHD therapy.
There is an ongoing debate about how effective tDCS is for individuals with ADHD. One study found that applying tDCS to the left dorsolateral prefrontal cortex can help reduce impulsivity symptoms in ADHD, whereas another study reported that several sessions of anodic tDCS did not lead to improvements in ADHD symptoms or cognitive abilities.
New Research:
Two recent meta-analyses have searched for a resolution to these conflicting findings. Both included only randomized controlled trials (RCTs) using either sham stimulation or a waitlist for controls.
Each team included seven studies in their respective meta-analyses, three of which appeared in both.
Both Wang et al. (three RCTs totaling 97 participants) and Wen et al. (three RCTs combining 121 participants) reported very large effect size reductions in inattention symptoms from tDCS versus controls. There was only one RCT overlap between them. Wang et al. had moderate to high variation (heterogeneity) in individual study outcomes, whereas Wen et al. had virtually none. There was no indication of publication bias.
Whereas Wen et al.’s same three RCTs found no significant reduction in hyperactivity/impulsivity symptoms, Wang et al. combined five RCTs with 221 total participants and reported a medium effect size reduction in impulsivity symptoms. This time, there was an overlap of two RCTs between the studies. Wen et al. had no heterogeneity, while Wang et al. had moderate heterogeneity. Neither showed signs of publication bias.
Turning to performance-based tasks, Wang et al. reported a medium effect size improvement in attentional performance from tDCS over controls (three RCTs totaling 136 participants), but no improvement in inhibitory control (five RCTs combining 234 persons).
Wang et al. found no significant difference in adverse events (four RCTs combining 161 participants) between tDCS and controls, with no heterogeneity. Wen et al. found no significant difference in dropout rates (4 RCTs totaling 143 individuals), again with no heterogeneity.
Wang et al. concluded, “tDCS may improve impulsive symptoms and inattentive symptoms among ADHD patients without increasing adverse effects, which is critical for clinical practice, especially when considering noninvasive brain stimulation, where patient safety is a key concern.”
Wen et al. further concluded, “Our study supported the use of tDCS for improving the self-reported symptoms of inattention and objective attentional performance in adults diagnosed with ADHD. However, the limited number of available trials hindered a robust investigation into the parameters required for establishing a standard protocol, such as the optimal location of electrode placement and treatment frequency in this setting. Further large-scale double-blind sham-controlled clinical trials that include assessments of self-reported symptoms and performance-based tasks both immediately after interventions and during follow-up periods, as well as comparisons of the efficacy of tDCS targeting different brain locations, are warranted to address these issues.”
The Take-Away:
Previous studies have shown mixed results on the benefits of this therapy on ADHD. These new findings suggest that tDCS may hold some real promise for adults with ADHD. While the technique didn’t meaningfully shift hyperactivity or impulsivity, it was well-tolerated and showed benefit, especially in self-reported symptoms. However, with only a handful of trials to draw from, it would be a mistake to suggest tDCS as a standard treatment protocol. Larger, well-designed studies are the next essential step to clarify where, how, and how often tDCS works best.
Liqiong Wang, Wenjing Liao, and Rongwang Yang, “Efficacy and Safety of Transcranial Direct Current Stimulation for Attention Deficit Hyperactivity Disorder: A Meta–Analysis,” Alpha Psychiatry (2025) 26(5), 47294, https://doi.org/10.31083/AP47294.
Yu-Ho Wen, Wei-Fu Pan, Cheuk-Kwan Sun, Yu-Shian Cheng, and Kuo-Chuan Hung, “Therapeutic effects of tDCS on behavioral and cognitive functions in adults diagnosed with attention-deficit/hyperactivity disorder: a systematic review and meta-analysis on randomized controlled trials,” European Archives of Psychiatry and Clinical Neuroscience, https://doi.org/10.1007/s00406-025-02162-1.