June 10, 2025

Meta-analysis Finds Strong Link Between Maternal Smoking During Pregnancy and Increased Risk of ADHD in Children

This new meta-analysis confirms what other meta-analysis have already shown, i.e, that there exists in the population an association between maternal smoking during pregnancy and ADHD in their offspring.  But reader beware, association does not mean causation.

The team identified 55 studies with quantitative data suitable for meta-analysis, including 11 case-control, 13 cross-sectional, and 31 retrospective/prospective cohort studies. 

Altogether they combined more than four million persons in countries spanning six continents, including the United States, Finland, Sweden, Brazil, the Netherlands, Japan, the UK, Spain, China, Australia, New Zealand, Norway, Canada, France, Sweden, South Korea, Turkey, Romania, Bulgaria, Lithuania, Germany, Denmark, Egypt, and India.

Meta-analysis of all 55 studies found that offspring of mothers who smoked tobacco during pregnancy were about 70% more likely to develop ADHD than offspring of mothers who did not smoke during pregnancy.

Because variation in outcomes across studies was very high, the team performed subgroup analyses to explore potential sources of this heterogeneity. 

Comparing study designs, cohort studies reported roughly 50% greater odds of ADHD among children of mothers who smoked during pregnancy, whereas case-control studies reported roughly 70% greater odds and cross-sectional studies 2.3-fold greater odds.

Studies using the most reliable method of determining ADHD – clinical interview/professional diagnosis – reported 90% greater odds, contrasting with 66% through medical records/databases and 58% through self-report by child/parent or through teacher report.

Good quality studies reported roughly 75% greater odds. 

Studies with sample sizes above two thousand similarly found 70% greater odds.

There was no sign of publication bias using the more commonly used Egger’s test, but a marginal indication of publication bias using Begg’s test. Performing a standard correction reduced the effect size, indicating that the offspring of mothers who smoked tobacco during pregnancy were over 50% more likely to develop ADHD than the offspring of mothers who did not smoke during pregnancy.

The team concluded, “This systematic review and meta-analysis of 55 studies, encompassing over four million participants, provides compelling evidence that maternal tobacco smoking during pregnancy significantly increases the odds of ADHD in children … These findings underscore the critical need for public health interventions aimed at reducing tobacco smoking during pregnancy.”

However, we disagree with this conclusion; The authors ignore substantial evidence showing that maternal smoking during pregnancy is confounded by maternal ADHD. These mothers transmit ADHD via genetics, not via their smoking. This study should be seen not as "...[further evidence that smoking during pregnancy causes ADHD.] ", but as a lesson in how easy it can be to see correlation as causation.

------

Struggling with side effects or not seeing improvement in your day-to-day life? Dive into a step-by-step journey that starts with the basics of screening and diagnosis, detailing the clinical criteria healthcare professionals use so you can be certain you receive an accurate evaluation. This isn’t just another ADHD guide—it’s your toolkit for getting the care you deserve. This is the kind of care that doesn’t just patch up symptoms but helps you unlock your potential and build the life you want. Whether you’ve just been diagnosed or you’ve been living with ADHD for years, this booklet is here to empower you to take control of your healthcare journey.

Proceeds from the sale of this book are used to support www.ADHDevidence.org.

Get the guide now– Navigating ADHD Care: A Practical Guide for Adults

Mahdi Mohammadian, Lusine G. Khachatryan, Filipp V. Vadiyan, Mostafa Maleki, Fatemeh Fatahian, and Abdollah Mohammadian-Hafshejani, “The association between maternal tobacco smoking during pregnancy and the risk of attention-deficit/hyperactivity disorder (ADHD) in offspring: A systematic review and meta-analysis,” PLOS ONE (2025), 20(2): e0317112, https://doi.org/10.1371/journal.pone.0317112.

Related posts

Researchers Have Found the First Risk Genes for ADHD

Researchers have found the first risk genes for ADHD

Our genes are very important for the development of mental disorders-including ADHD, where genetic factors capture up to 75% of the risk. Until now, the search for these genes had yet to deliver clear results.   In the 1990s, many of us were searching for genes that increased the risk for ADHD because we know from twin studies that ADHD had a robust genetic component.  Because I realized that solving this problem required many DNA samples from people with and without ADHD, I created the ADHD Molecular Genetics Network, funded by the US NIMH.  We later joined forces with the Psychiatric Genomics Consortium (PTC) and the Danish psych group, which had access to many samples.  
The result is a study of over 20,000 people with ADHD and 35,000 who do not suffer from it - finding twelve locations (loci) where people with a particular genetic variant have an increased risk of ADHD compared to those who do not have the variant.  The results of the study have just been published in the scientific journal Nature Genetics, https://www.nature.com/articles/s41588-018-0269-7.
These genetic discoveries provide new insights into the biology behind developing ADHD. For example, some genes have significance for how brain cells communicate with each other, while others are important for cognitive functions such as language and learning.
Our study used the genome-wide association study (GWAS)methodology because it allowed us to discover genetic loci anywhere on the genome.  The method assays DNA variants throughout the genome and determines which variants are more common among ADHDvs. control participants.  It also allowed for the discovery of loci having very small effects.  That feature was essential because prior work suggested that, except for very rare cases, ADHD risk loci would individually have small effects.
The main findings are:

A) we found 12 loci on the genome that we can be certain harbor DNA risk variants for ADHD.  None of these loci were traditional candidate genes' for ADHD, i.e., genes involved in regulating neurotransmission systems that are affected by ADHD medications.  Instead, these genes seem to be involved in the development of brain circuits.  
B) we found a significant polygenic etiology in our data, which means that there must be many loci(perhaps thousands) having variants that increase the risk for ADHD.  We will need to collect a much larger sample to find out which specific loci are involved;

We also compared the new results with those from a genetic study of continuous measures of ADHD symptoms in the general population. We found that the same genetic variants that give rise to an ADHD diagnosis also affect inattention and impulsivity in the general population.  This supports prior clinical research suggesting that, like hypertension and hypercholesteremia, ADHD is a continuous trait in the population.  These genetic data now show that the genetic susceptibility to ADHD is also a quantitative trait comprised of many, perhaps thousands, of DNA variants
The study also examined the genetic overlap with other disorders and traits in analyses that ask the questions: Do genetic risk variants for ADHD increase or decrease the likelihood a person will express other traits and disorders.   These analyses found a strong negative genetic correlation between ADHD and education. This tells us that many of the genetic variants which increase the risk for ADHD also make it more likely that a person will perform poorly in educational settings. The study also found a positive correlation between ADHD and obesity, increased BMI, and type-2 diabetes, which is to say that variants that increase the risk of ADHD also increase the risk of overweight and type-2 diabetes in the population. This work has laid the foundation for future work that will clarify how genetic risks combine with environmental risks to cause ADHD.  When the pieces of that puzzle come together, researchers will be able to improve the diagnosis and treatment of ADHD.

July 4, 2021

Large Sibling Study Finds Genetic Link Between ADHD and Other Disorders

Swedish Countrywide Sibling Population Study Finds Co-occurrence of ADHD with Neurological and Psychiatric Disorders is Largely Due to Genetics

A Swedish-Danish-Dutch team used the Swedish Medical Birth Register to identify the almost 1.7 million individuals born in the country between 1980 and 1995. Then, using the Multi-Generation Register, they identified 341,066 pairs of full siblings and 46,142 pairs of maternal half-siblings, totaling 774,416 individuals.

The team used the National Patient Register to identify diagnoses of ADHD, as well as neurodevelopmental disorders (autism spectrum disorder, developmental disorders, intellectual disability, motor disorders), externalizing psychiatric disorders (oppositional defiant and related disorders, alcohol misuse, drug misuse), and internalizing psychiatric disorders (depression, anxiety disorder, phobias, stress disorders, obsessive-compulsive disorder).

The team found that ADHD was strongly correlated with general psychopathology overall (r =0.67), as well as with the neurodevelopmental (r = 0.75), externalizing (r =0.67), and internalizing (r = 0.67) sub factors.

To tease out the effects of heredity, shared environment, and non-shared environment, a multivariate correlation model was used. Genetic variables were estimated by fixing them to correlate between siblings at their expected average gene sharing (0.5for full siblings, 0.25 for half-siblings). Non-genetic environmental components shared by siblings (such as growing up in the same family) were estimated by fixing them to correlate at 1 across full and half-siblings. Finally, non-shared environmental variables were estimated by fixing them to correlate at zero across all siblings.

This model estimated the heritability of the general psychopathology factor at 49%, with the contribution of the shared environment at 7 percent and the non-shared environment at 44%. After adjusting for the general psychopathology factor, ADHD showed a significant and moderately strong phenotypic correlation with the neurodevelopmental-specific factor (r = 0.43), and a significantly smaller correlation with the externalizing-specific factor (r = 0.25).

For phenotypic correlation between ADHD and the general psychopathology factor, genetics explained 52% of the total correlation, the non-shared environment 39%, and the shared familial environment only 9%. For the phenotypic correlation between ADHD and the neurodevelopmental-specific factor, genetics explained the entire correlation because the other two factors had competing effects that canceled each other out. For the phenotypic correlation between ADHD and the externalizing-specific factor, genetics explained 23% of the correlation, shared environment 22%, and non-shared environment 55%.

The authors concluded that "ADHD is more phenotypically and genetically linked to neurodevelopmental disorders than to externalizing and internalizing disorders, after accounting for a general psychopathology factor. ... After accounting for the general psychopathology factor, the correlation between ADHD and the neurodevelopmental-specific factor remained moderately strong, and was largely genetic in origin, suggesting substantial unique sharing of biological mechanisms among disorders. In contrast, the correlation between ADHD and the externalizing-specific factor was much smaller and was largely explained by-shared environmental effects. Lastly, the correlation between ADHD and the internalizing subfactor was almost entirely explained by the general psychopathology factor. This finding suggests that the comorbidity of ADHD and internalizing disorders are largely due to shared genetic effects and non-shared environmental influences that have effects on general psychopathology."

March 16, 2024

ADHD and Acetaminophen use During Pregnancy

ADHD and Acetaminophen use During Pregnancy

A recent CNN report, http://tinyurl.com/yannlfd6, highlighted a paper published in Pediatrics, which reported that pregnant women who use acetaminophen during pregnancy put their unborn child at two-fold increased risk for attention deficit hyperactivity disorder (ADHD).    In that study, acetaminophen use during pregnancy was common;  nearly half of women surveyed used the painkiller during pregnancy.   Other studies have reported similar associations of acetaminophen, also known as paracetamol with ADHD or with other problems in childhood (e.g., https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5300094/, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177119/ https://www.ncbi.nlm.nih.gov/pubmed/24566677https://www.ncbi.nlm.nih.gov/pubmed/24163279). Given these prior findings, it seems unlikely that the new report is a chance finding.  But does it make any biological sense?   One answer to that question came from an epigenetic study.  Such studies figure out if assaults from the environment change the genetic code.  One epigenetic study found that prenatal exposure changes the fetal genome via a process called methylation.  Such genomic changes could increase the risk for ADHD (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5540511/). Because all of these studies are observational studies, one cannot assert with certainty that there is a causal link between acetaminophen use during pregnancy. 

The observed association could be due to some unmeasured third factor.  Although the researchers did a respectable job ruling out some third factors, we must acknowledge some uncertainty in the finding.  That said, what should pregnant women do if they need acetaminophen.   I suggest you bring this information to your physician and ask if there is a suitable alternative.

March 16, 2021

Population Study Finds Strong Association Between Assisted Reproductive Technologies and Offspring ADHD

Taiwanese Nationwide Population Study Finds Strong Association Between Assisted Reproductive Technologies and Offspring ADHD

Background: 

Since the first in vitro fertilization (IVF) in 1978, assisted reproductive technology (ART) has led to over 10 million births worldwide.  

There are four types of embryo transfers, depending on whether they are fresh or frozen, and on their developmental stage. 

Fresh cleavage stage embryos are transferred on day 2 or 3 following fertilization and typically contain four to eight relatively large, undifferentiated cells. Fresh blastocyst embryos are transferred on day 5 or 6 after fertilization. At this point, they have developed over a hundred cells and have differentiated into two types: the inner cell mass, which develops into the fetus, and the outer cell layer, which forms the placenta. 

Globally, more children are now born through assisted reproductive technology using frozen-thawed embryo transfer than fresh embryo transfer.  

Research suggests that ART-conceived offspring may face increased risks of cardiovascular, musculoskeletal, chromosomal, urogenital diseases, and cancers. Might they also be at increased risk for ADHD? 

Study:

Taiwan’s single-payer health insurance covers over 99% of people and records all their healthcare activity. Since 1998, it has kept an ART database for all couples registered for IVF treatment. 

A Taiwanese research team reviewed all records for the five-year period from 2013 through 2017, ultimately analyzing 3,125 live singleton births from fresh cleavage stages, 1,332 from fresh blastocysts, 1,465 from frozen cleavage stages, and 4,708 from frozen blastocysts, alongside 878,643 naturally conceived singleton births. 

The team controlled for the following potential confounders: pregnancy-induced hypertension, chronic hypertension, diabetes mellitus, gestational diabetes mellitus, unhealthy lifestyle, placenta previa, placenta abruption, preterm premature rupture of membrane, and postpartum hemorrhage. 

Results:

With these adjustments, cleavage stage embryo transfers, whether fresh or frozen, were associated with a seven-fold higher rate of ADHD diagnosis in offspring than natural conception. 

Frozen blastocyst embryo transfers were likewise linked to a seven-fold increase in ADHD diagnoses in offspring compared to natural conception. Notably, fresh blastocyst transfers showed a 19-fold increase, likely due to the smaller number of cases in this category. 

The team concluded, “Compared to natural conception, ART is associated with higher risks, particularly for preterm birth, ADHD, and developmental delay.” 

Conclusion: 

This large national cohort suggests that ART-conceived singletons face higher rates of several adverse outcomes, including preterm birth, ADHD, and developmental delay. Clinicians and prospective parents should therefore weigh these potential associations when counseling and planning care, prioritize optimized ART protocols and perinatal management, and ensure early developmental surveillance for ART-conceived children so concerns can be identified and addressed promptly.

It is important to note that the findings also point to the likely contribution of underlying parental infertility in these developmental outcomes. Future research should aim to disentangle parental- versus procedure-related risks to clarify absolute risk magnitudes. As always, associations of this time should not be interpreted as causal due to the inability of observational studies to rule out all possible confounding factors.

October 1, 2025

Why Do So Many Young People Miss an ADHD Diagnosis? Insights from a New Study

Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental conditions, yet many young people, especially girls, receive a diagnosis late or not at all. This matters, because a delayed diagnosis often means missed opportunities for support, treatment, and improved long-term outcomes. A recent study by Barclay and colleagues (2024) sheds new light on why ADHD recognition is inconsistent, and what we can do about it.

The Study:

Researchers analyzed data from nearly 10,000 children in the UK Millennium Cohort Study. They compared children whose ADHD was recognized early (ages 5–7), later (ages 11–14), or not recognized at all, despite evidence of symptoms. The team also looked at differences between boys and girls to better understand why diagnosis patterns vary by sex.

Key Findings:
  1. Severity Drives Earlier Recognition
    Children who were diagnosed at a younger age often had more visible difficulties: emotional outbursts, peer conflict, conduct issues, and lower cognitive scores. In other words, the “louder” and more disruptive the symptoms, the more likely ADHD was flagged early.

  2. “Quieter” ADHD May Be Overlooked
    Children with stronger prosocial skills or higher cognitive ability were less likely to be recognized, even if they had clear ADHD symptoms. These children may be able to “mask” their difficulties, or adults may misinterpret their struggles as personality quirks rather than signs of ADHD.

  3. Emotional Dysregulation Matters
    Emotional dysregulation—big swings in mood, difficulty calming down, intense frustration—was strongly linked to recognized ADHD in boys, but not in girls. This suggests that clinicians may pay closer attention to these behaviors in boys, while overlooking them in girls.

  4. Co-occurring Conditions Can Influence Diagnosis
    Children with autism were more likely to have their ADHD identified. On the flip side, those who engaged in more physical activity were slightly less likely to be recognized, though the reasons for this are not yet clear.

What This Means for Clinicians:

The study highlights the importance of looking beyond the “classic” hyperactive child stereotype when considering ADHD. Clinicians should:

  • Pay attention to symptoms of emotional dysregulation, even if they are not part of standard diagnostic checklists.

  • Consider ADHD in children with good grades or strong social skills if other symptoms are present.

  • Be mindful of gender differences, since girls may be more likely to internalize symptoms or present with inattentiveness rather than hyperactivity.

What This Means for Parents and Patients:

If you’re a parent, it’s important to trust your observations. If your child struggles with focus, organization, or emotional regulation—even if they are doing well academically or socially—these could still be signs of ADHD. Advocating for an evaluation can make a big difference.

Moving Forward

This study makes clear that ADHD is not one-size-fits-all. Recognition often depends on how symptoms show up, how disruptive they appear, and even the child’s gender. By broadening our awareness and refining our screening practices, we can ensure that fewer children slip through the cracks and more receive the support they need early in life.

September 30, 2025

ADHD Medication and Academic Achievement: What Do We Really Know?

Parents and teachers often ask: Does ADHD medication actually improve grades and school performance? The answer is: yes, but with important limitations. Medications are very effective at reducing inattention, hyperactivity, and impulsivity but their impact on long-term academic outcomes like grades and test scores is not as consistent.

In the Classroom

The medications for ADHD consistently: Improve attention, reduce classroom disruptions, increase time spent on-task and help children complete more schoolwork and homework. Medication can help children with ADHD access learning by improving the conditions for paying attention and persisting with work.

Does Medication Improve Test Scores and Grades?

This is where the picture gets more complicated.  Medications have  stronger effect on how much work is completed but a weaker effect on accuracy. Many studies show that children on medication attempt more problems in reading, math, and spelling, but the number of correct answers doesn’t always improve as much. Some studies find small but significant improvements in national exam scores and higher education entrance tests during periods when children with ADHD are medicated.

Grades improve, as well, but modestly. Large registry studies in Sweden show that students who consistently take medication earn higher grades than those who don’t. However, these gains usually do not close the achievement gap with peers who do not have ADHD.

Keep in mind that small improvements for a group as a whole mean that some children are benefiting greatly from medication and others not at all.  We have no way of predicting which children will improve and which do not. 

Medication Alone Isn’t Enough

Academic success depends on more than just reducing inattention, hyperactivity and impulsivity. Skills like organization, planning, studying, and managing long-term projects are also critical.  Medication cannot teach these skills.

So, in addition to medication, the patient's treatment program should include educational support (tutoring, structured study skills programs), behavioral interventions (parent training, classroom management strategies), and accommodations at school (extra time, reduced distractions, organizational aids) Parents should discuss with their prescriber which of these methods would be appropriate.

Conclusions 

ADHD medication is a powerful tool for reducing symptoms and supporting learning. It improves test scores and grades for some children, especially when taken consistently. But it is not a magic bullet for academic success. The best results come when medication is combined with educational and behavioral supports that help children build the skills they need to thrive in school and beyond.

September 17, 2025