Understanding Teen Health and Well-being in ADHD: A Fresh Perspective from the CDC

Recent research from the Centers for Disease Control and Prevention (CDC) highlights distinct health and social-emotional challenges faced by teens diagnosed with Attention-Deficit/Hyperactivity Disorder (ADHD). This study, published in the Journal of Developmental and Behavioral Pediatrics, offers critical insights directly from the teens themselves, providing a unique view often missed when relying solely on parent or clinical reports. 

Researchers analyzed nationally representative data from July 2021 through December 2022, comparing self-reported experiences of teens aged 12 to 17 with and without ADHD. Approximately 10% of teenagers had an ADHD diagnosis, and the findings reveal specific areas where teens with ADHD face notable difficulties. 

Teenagers with ADHD reported significantly higher rates of bullying victimization and struggles in making friends compared to their peers. Surprisingly, they were less likely to report a lack of peer support, suggesting complexities in how they perceive friendships and social networks. The study underscores the importance of directly engaging teens in assessing their social relationships, rather than solely relying on parental perspectives. 

Sleep difficulties emerged as another critical issue for teens with ADHD. About 80% reported problems like difficulty waking up and irregular wake times, markedly higher than their non-ADHD counterparts. Such disruptions can exacerbate attention difficulties and emotional regulation issues, further complicating daily life for these teens. 

Excessive screen time also stood out, with nearly two-thirds of teens with ADHD spending over four hours daily on screens, excluding schoolwork. This high screen usage is concerning, given its potential negative impact on physical and mental health, including sleep quality and social interactions. 

Notably, the study found no significant differences in physical activity levels or concerns about weight between teens with and without ADHD. This finding contrasts with previous studies that have highlighted lower physical activity among children with ADHD, suggesting the need for continued research on how physical activity is measured and encouraged in this population. 

The study’s authors emphasize the importance of health promotion interventions tailored specifically for teens with ADHD. By directly engaging teens and considering their unique perspectives, interventions can better address social-emotional well-being and healthy lifestyle behaviors, ultimately improving long-term outcomes for this vulnerable group. 

Overall, this research provides compelling evidence for healthcare providers, educators, and families to focus on supporting teens with ADHD in areas of social skills, sleep hygiene, and healthy screen time habits. Such targeted support can significantly enhance the quality of life and health outcomes for adolescents navigating the challenges of ADHD. 

Katz, S. M., Claussen, A. H., Black, L. I., Leeb, R. T., Newsome, K., Danielson, M. L., & Zablotsky, B. (2025). Attention-Deficit/Hyperactivity Disorder and Teen Self-Report on Health Behaviors and Social-Emotional Wellbeing: United States, July 2021–December 2022. Journal of Developmental & Behavioral Pediatrics, 46(2), e155–e161. doi:10.1097/DBP.0000000000001350.

Related posts

Driving, Safety, and ADHD

How to Improve Driving Safety for Teens and Adults With ADHD

Drivers with ADHD are far more likely to be involved in crashes, to be at fault in crashes,to be in severe crashes, and to be killed in crashes. The more severe the ADHD symptoms, the higher the risk. Moreover, ADHD is often accompanied by comorbid conditions such as oppositional-defiant disorder, depression, and anxiety that further increase the risk.

What can be done to reduce this risk? A group of experts has offered the following consensus recommendations:

·   Use stimulant medications. While there is no reliable evidence on whether non-stimulant medications are of any benefit for driving, there is solid evidence that stimulant medications are effective in reducing risk. But there is also a rebound effect in many individuals after the medication wears off, in which performance actually becomes worse than if had been prior to medication. It is therefore important to time the taking of medication so that its period of effectiveness corresponds with driving times. If one has to drive right after waking up, it makes sense to take a rapid acting form. The same holds for late night driving that may require a quick boost.

·   Use a stick shift vehicle wherever possible. Stick shifts make drivers pay closer attention than automatic transmissions. The benefits in alertness are most notable in city traffic. But using a stick shift is far less beneficial in highway driving, where shifting is less frequent.

·  Avoid cruise control. Highways can be monotonous, making drivers more prone to boredom and distraction. That is even more true for those with ADHD, so it is best to keep cruise control turned off.

·   Avoid alcohol. Drinking and driving is a bad idea for everyone, but, once again, it's even worse for those with ADHD. Parents should consider a no-questions-asked policy of either picking up their teenager anytime and anywhere, or setting up an account with a ride-sharing service.·   Place the smartphone out of reach and hearing. Cell phone use is as about as likely to impair as alcohol. Hands-free devices only reduce this risk moderately, because they continue to distract. Texting can be deadly. Sending a short text or emoticon can be the equivalent of driving 100 yards with one's eyes closed. Either turn on Do Not Disturb mode, or, for even greater effectiveness, place the smart phone in the trunk.

·   Make use of automotive performance monitors. These can keep track of maximum speeds and sudden acceleration and braking, to verify that a teenager is not engaging in risky behaviors.

·   Take advantage of graduated driver's licensing laws wherever available. These laws forbid the presence of peers in the vehicle for the first several (for example, six) months of driving. Parents can extend that period for teenagers with ADHD, or set it as a condition in states that lack such laws.

·  Encourage practicing after obtaining a learner's permit. Teenagers with ADHD generally require more practice than those without. A pre-drive checklist can be a good place to start. For example:check the gas, check the mirrors, make sure the view through the windows is unobstructed, put cell phone in Do Not Disturb mode and place it out of reach, put on seat belt, scan for obstacles.

·   Consider outsourcing. Look for a driving school with a professional to teach good driving skills and habits.

Experts do not agree on whether to delay licensing for those with ADHD. On the one hand, teenagers with ADHD are 3-4 years behind in the development of brain areas responsible for executive functions that help control impulses and better guide behavior. Delaying licensing can reduce risk by about 20 percent. On the other hand, teens with ADHD are more likely to drive without a license, and no one wants to encourage that, however inadvertently. Moreover, graduated driver's licensing laws only have legal effect on teens who get their licenses at the customary age.

February 22, 2021

How ADHD and ODD Symptoms in Teens Can Affect Long-Term Education Outcomes

A recent Finnish study offers important insights into how symptoms of Attention-Deficit/Hyperactivity Disorder (ADHD) and Oppositional Defiant Disorder (ODD) in adolescence can shape academic performance, and even influence educational outcomes well into adulthood.  Children and teens with ODD often show a pattern of angry, irritable moods, arguing with adults, and defying rules or requests. They may lose their temper easily, be quick to blame others for mistakes, and deliberately annoy people. 

The researchers followed participants from the Northern Finland Birth Cohort of 1986, a large, population-based study. They looked at over 6,000 teens whose parents reported symptoms of ADHD and ODD when the children were 15–16 years old. The team then tracked their academic performance at age 16 and their highest level of education by age 32.

ADHD, ODD, and Academic Performance

ADHD is well-known for affecting school performance, often linked to difficulties with attention, impulse control, and executive functioning. ODD, characterized by patterns of irritability, defiance, and hostility toward authority figures, is less studied in this context, especially when it appears without ADHD.

The study found that both disorders, whether occurring separately or in combination, were associated with poorer grades at age 16. However, teens with ADHD symptoms performed worse than those with only ODD symptoms. Interestingly, students with both ADHD and ODD symptoms had the most pronounced academic struggles, but their performance didn’t significantly differ from the ADHD-only group at that age.

Long-Term Educational Impact

By age 32, the effects were even more striking. Participants with both ADHD and ODD symptoms were the least likely to attend or graduate from higher education institutions. Only about 10% of them reached that level, compared to over 40% of those without these symptoms.

Even after accounting for other influences, such as parental education, family structure, and additional psychiatric conditions, the findings held. This suggests that the combination of ADHD and ODD symptoms in adolescence may uniquely disrupt the educational path.

For adolescent girls with ODD symptoms, the impact was particularly notable: they were significantly more likely to complete only the mandatory nine years of schooling.

Why This Matters

These results underscore the lasting effects that behavioral and emotional challenges in adolescence can have. While schools often focus on immediate academic outcomes, this study highlights the importance of early identification and support, not just for ADHD but for ODD as well.

Parents and educators play a crucial role in shaping future outcomes for children and adolescents with ADHD. Recognizing early signs of attention problems, emotional dysregulation, or defiance—and responding with appropriate interventions—could help redirect educational trajectories and open up opportunities down the line.

In short, it’s not just about managing classroom behavior. It’s about supporting long-term potential. When ADHD and ODD symptoms show up in adolescence, they don’t just make school harder—they can limit a student’s entire educational future. Early support and understanding can make a lasting difference.

May 29, 2025

Acupuncture for ADHD: A Promising Alternative or Placebo? A Look at Recent Research

Attention Deficit Hyperactivity Disorder (ADHD) is a common condition affecting children and adolescents worldwide, characterized by symptoms such as hyperactivity, impulsivity, and inattention. While traditional treatments like medication and behavioral therapy are often used, some individuals are turning to complementary and alternative therapies (CAM) for help. One such option gaining attention is acupuncture. But does it really work for ADHD?

A recent comprehensive study aimed to evaluate the effectiveness of acupuncture in treating ADHD symptoms. Here’s a breakdown of the findings, with a focus on the age groups included in the research and what these findings could mean for ADHD treatment options.

What the Study Explored

The study in question conducted a systematic review and meta-analysis (SR/MA) of acupuncture trials for ADHD, comparing its effects to traditional treatments such as pharmacotherapy and behavioral therapy. The researchers focused on acupuncture’s impact on core ADHD symptoms like hyperactivity, impulsivity, inattention, and conduct problems, while also exploring how acupuncture might help with other issues, such as learning difficulties and psychosomatic symptoms.

One key feature of this study was the inclusion of a broad age range of participants, specifically children and adolescents. These two groups are the most commonly diagnosed with ADHD, and their responses to treatments can vary significantly. Understanding how acupuncture works for these age groups is critical for evaluating its effectiveness as an ADHD treatment.

Here’s what the study found across the different age groups:

  • Children: Acupuncture appeared to be particularly effective in reducing hyperactivity and impulsivity in younger children with ADHD. These symptoms, often more prominent in younger populations, responded well to acupuncture when used alongside other treatments like medication.

  • Adolescents: For adolescents, acupuncture seemed to improve both hyperactivity and inattention, two symptoms that can often become more challenging as children grow older. This age group also benefited from acupuncture’s ability to reduce side effects from ADHD medications, such as irritability or sleep disturbances.

  • Combined Effects for Both Groups: When acupuncture was used in combination with pharmacotherapy, it also helped reduce side effects such as sleep problems and appetite loss in both children and adolescents. This could make it an attractive adjunctive treatment for those already on medication but experiencing undesirable effects.

  • Inattention and Conduct Problems: For both children and adolescents, acupuncture used in conjunction with either medication or behavioral therapy showed notable improvements in inattention and conduct problems—two of the most difficult symptoms of ADHD to manage.

  • Learning Difficulties and Psychosomatic Symptoms: Interestingly, the combination of acupuncture and medication provided significant improvements in learning difficulties, which are particularly relevant for children with ADHD. Meanwhile, acupuncture paired with behavioral therapy had a positive impact on psychosomatic symptoms, such as anxiety or stress, that often co-occur with ADHD.

Despite these promising results, the study also highlighted several limitations:

  • Study Quality Issues: The quality of the studies reviewed was often low, with many trials lacking the rigorous controls needed for high confidence in their results. For example, only a small number of trials used objective ADHD diagnostic tools, which could lead to biases in assessing acupuncture’s effectiveness.

  • Need for More Research: There is a lack of large-scale, high-quality randomized controlled trials (RCTs) comparing acupuncture with placebo treatments, which makes it hard to determine whether acupuncture’s effects are truly therapeutic or simply a placebo.

Conclusion: Is Acupuncture a Good Option for ADHD?

In short, and as is so often the way of evidence-based medicine, we still can’t say with absolute certainty one way or the other. These studies may show promise in improving hyperactivity, impulsivity, inattention, and conduct problems– in both children and adolescents. However, the evidence is not yet strong enough to recommend it as a primary treatment. While it may serve as a helpful complement to standard therapies, especially for those struggling with medication side effects or access to behavioral therapy, more research is needed to establish its effectiveness.

April 21, 2025

Population Study Links ADHD Medication with Reduced Criminality, Suicides, Automotive Crashes, Substance Abuse

Many studies have shown that ADHD is associated with increased risks of suicidal behavior, substance misuse, injuries, and criminality. As we often discuss in our blogs, treatments for ADHD include medication and non-medication options, such as CBT (Cognitive Behavioral Therapy). While non-drug approaches are often used for young children or mild cases of ADHD, medications – both stimulants and non-stimulants – are common for adolescents and adults. 

Global prescriptions for ADHD drugs have risen significantly in recent years, raising questions about their safety and effectiveness. Randomized controlled trials have demonstrated that medication can help reduce the core symptoms of ADHD. However, research from these trials still offers limited or inconclusive insights into wider and more significant clinical outcomes, such as suicidal behavior and substance use disorder.

An international study team conducted a nationwide population study using the Swedish national registers. Sweden has a single-payer national health insurance system, which covers nearly every resident, enabling such studies. The researchers examined all Swedish residents aged 6 to 64 who received their first ADHD diagnosis between 2007 and 2018. Analyses of criminal behavior and transport accidents focused on a subgroup aged 15 to 64, since individuals in Sweden must be at least 15 years old to be legally accountable for crimes or to drive.

The team controlled for confounding factors, including demographics (age at ADHD diagnosis, calendar year, sex, country of birth, highest education (using parental education for those under 25), psychiatric and physical diagnoses, dispensations of psychotropic drugs, and health care use (outpatient visits and hospital admissions for both psychiatric and non-psychiatric reasons).

Time-varying covariates from the previous month covered diagnoses, medication dispensations, and healthcare use. During the study, ADHD treatments licensed in Sweden included amphetamine, atomoxetine, dexamphetamine, guanfacine, lisdexamphetamine, and methylphenidate.

After accounting for covariates, individuals diagnosed with ADHD who received medication treatment showed better outcomes than those who did not. Specifically:

-Suicidal behaviors dropped by roughly 15% in both first-time and recurrent cases.

-Initial criminal activity decreased by 13%, with repeated offences falling by 25%.

-Substance abuse initiation declined by 15%, while recurring substance abuse was reduced

by 25%.

-First automotive crashes were down 12%, and subsequent crashes fell by 16%.

There was no notable reduction in first-time accidental injuries, and only a marginally significant 4% decrease in repeated injuries.

The team concluded, “Drug treatment for ADHD was associated with beneficial effects in reducing the risks of suicidal behaviours, substance misuse, transport accidents, and criminality, but not accidental injuries when considering first event rate. The risk reductions were more pronounced for recurrent events, with reduced rates for all five outcomes.”

Meta-analysis of Non-invasive Brain Stimulation Finds Limited Evidence of Efficacy

Background: 

Pharmacotherapies, such as methylphenidate, are highly effective for short-term ADHD management, but issues remain with medication tolerability and adherence. Some patients experience unwanted side effects from stimulant medications, leaving them searching for alternative ADHD treatments. Alternative treatments such as cognitive training, behavioral therapies, psychological interventions, neurofeedback, and dietary changes have, so far, shown limited success. Thus, there is a critical need for non-pharmacological options that boost neurocognitive performance and address core ADHD symptoms.

First— What Are NIBS (Non-Invasive Brain Stimulation) Techniques?

Non-invasive brain stimulation (NIBS) techniques, including transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS), transcranial alternating current stimulation (tACS), and repetitive transcranial magnetic stimulation (rTMS) are generating growing attention within the scientific community. 

NIBS techniques are methods that use external stimulation, such as magnets or electrical currents, to affect brain activity without any invasive procedures. In transcranial alternating current stimulation (tACS), for example, small electrodes are placed on the scalp of the patient, and a weak electrical current is administered. 

The theory behind these techniques is that when a direct current is applied between two or more electrodes placed on specific areas of the head, it makes certain neurons more or less likely to fire. This technique has been successfully used to treat conditions like depression and anxiety, and to aid recovery from stroke or brain injury. 

The Study: 

Previous meta-analyses have produced conflicting indications of efficacy. A Chinese research team consisting of sports and rehabilitative medicine professionals has just published a network meta-analysis to explore this further, through direct comparison of five critical outcome domains: inhibitory control, working memory, cognitive flexibility, inattention, hyperactivity and impulsivity.

To be included, randomized controlled trials needed to have participants diagnosed with ADHD, use sham control groups, and assess ADHD symptoms and executive functions – such as inhibitory control, working memory, cognitive flexibility, inattention, hyperactivity, and impulsivity – using standardized tests.

A total of thirty-seven studies encompassing 1,615 participants satisfied the inclusion criteria. It is worth noting, however, that the authors did not specify the number of randomized controlled trials nor the number of participants included in each arm of the network meta-analysis.

Furthermore, the team stated, “We checked for potential small study effects and publication bias by conducting comparison-adjusted funnel plots,” but did not share their findings. They also did not provide information on outcome variation (heterogeneity) among the RCTs.

Results:

Ultimately, none of the interventions produced significant improvements in ADHD symptoms, whether in inattention symptoms or hyperactivity/impulsivity symptoms.  Likewise, none of the interventions produced significant improvements in inhibitory control. Some tDCS interventions enhanced working memory and cognitive flexibility, but details about trial numbers and participants were missing. The team concluded, “none of the NIBS interventions significantly improved inhibitory control compared to sham controls. … In terms of working memory, anodal tDCS over the left DLPFC plus cathodal tDCS over the right DLPFC … and anodal tDCS over the right inferior frontal cortex (rIFC) plus cathodal tDCS over the right supraorbital area ... were associated with significant improvements compared to sham stimulation. For cognitive flexibility, only anodal tDCS over the left DLPFC plus cathodal tDCS over the right supraorbital area demonstrated a statistically significant benefit relative to sham. ... Compared to the sham controls, none of the NIBS interventions significantly improved inattention. ... Compared to the sham controls, none of the NIBS interventions significantly improved hyperactivity and impulsivity.”

How Should We Interpret These Results?

In a word, skeptically.

If one were to read just the study’s abstract, which states, “The dual-tDCS and a-tDCS may be considered among the preferred NIBS interventions for improving cognitive function in ADHD”, it might seem that the takeaway from this study is that this combination of brain stimulation techniques might be a viable treatment option for those with ADHD. Upon closer inspection, however, the results do not suggest that any of these methods significantly improve ADHD symptoms. Additionally, this study suffers from quite a few methodological flaws, so any results should be viewed critically.

October 31, 2025

Meta-analysis of Transcranial Direct Current Stimulation Still Yields Little Sign of Efficacy

Background:

Despite recommendations for combined pharmacological and behavioral treatment in childhood ADHD, caregivers may avoid these options due to concerns about side effects or the stigma that still surrounds stimulant medications. Alternatives like psychosocial interventions and environmental changes are limited by questionable effectiveness for many patients. Increasingly, patients and caregivers are seeking other therapies, such as neuromodulation – particularly transcranial direct current stimulation (tDCS). 

tDCS seeks to enhance neurocognitive function by modulating cognitive control circuits with low-intensity scalp currents. There is also evidence that tDCS can induce neuroplasticity. However, results for ADHD symptom improvement in children and adolescents are inconsistent. 

The Method:

To examine the evidence more rigorously, a Taiwanese research team conducted a systematic search focusing exclusively on randomized controlled trials (RCTs) that tested tDCS in children and adolescents diagnosed with ADHD. They included only studies that used sham-tDCS as a control condition – an essential design feature that prevents participants from knowing whether they received the active treatment, thereby controlling for placebo effects. 

The Results:

Meta-analysis of five studies combining 141 participants found no improvement in ADHD symptoms for tDCS over sham-TDCS. That held true for both the right and left prefrontal cortex. There was no sign of publication bias, nor of variation (heterogeneity) in outcomes among the RCTs.  

Meta-analysis of six studies totaling 171 participants likewise found no improvement in inattention symptoms, hyperactivity symptoms, or impulsivity symptoms for tDCS over sham-TDCS. Again, this held true for both the right and left prefrontal cortex, and there was no sign of either publication bias or heterogeneity. 

Most of the RCTs also performed follow-ups roughly a month after treatment, on the theory that induced neuroplasticity could lead to later improvements. 

Meta-analysis of four RCTs combining 118 participants found no significant improvement in ADHD symptoms for tDCS over sham-TDCS at follow-up. This held true for both the right and left prefrontal cortex, with no sign of either publication bias or heterogeneity. 

Meta-analysis of five studies totaling 148 participants likewise found no improvement in inattention symptoms or hyperactivity symptoms for tDCS over sham-TDCS at follow-up. AS before, this was true for both the right and left prefrontal cortex, with no sign of either publication bias or heterogeneity. 

The only positive results came from meta-analysis of the same five studies, which reported a medium effect size improvement in impulsivity symptoms at follow-up. Closer examination showed no improvement from stimulation of the right prefrontal cortex, but a large effect size improvement from stimulation of the left prefrontal cortex

Interpretation: 

It is important to note that the one positive result was from three RCTs combining only 90 children and adolescents, a small sample size. Moreover, when only one of sixteen combinations yields a positive outcome, that begins to look like p-hacking for a positive result. 

In research, scientists use something called a “p-value” to determine if their findings are real or just due to chance. A p-value below 0.05 (or 5%) is considered “statistically significant,” meaning there's less than a 5% chance the result happened by pure luck. 

When testing twenty outcomes by this standard, one would expect one to test positive by chance even if there is no underlying association. In this case, one in 16 comes awfully close to that. 

To be sure, the research team straightforwardly reported all sixteen outcomes, but offered an arguably over-positive spin in their conclusion: “Our study only showed tDCS-associated impulsivity improvement in children/adolescents with ADHD during follow-ups and anode placement on the left PFC. ... our findings based on a limited number of available trials warrant further verification from large-scale clinical investigations.” 

October 24, 2025