July 24, 2021
We are only beginning to explore how ADHD affects sleep in adults. A team of European researchers recently published the first meta-analysis on the subject, drawing on thirteen studies with 1,439 participants. They examined both subjective evaluations from sleep questionnaires and objective measurements from actigraphy and polysomnography. However, due to differences among the studies, only two to seven could be combined for any single topic, generally with considerably fewer participants (88 to 873).
Several patterns emerged. Looking at results from sleep questionnaires, they found that adults with ADHD were far more likely to report general sleep problems (very large SMD effect size 1.55). Getting more specific, they were also more likely to report frequent night awakenings(medium effect size 0.56), taking longer to get to sleep (medium-to-large effect size 0.67), lower sleep quality (medium-to-large effect size 0.69), lower sleep efficiency (medium effect size 0.55), and feeling sleepy during the daytime(large effect size 0.75).
There was little to no sign of publication bias, though considerable heterogeneity on all but night awakenings and sleep quality.
Actigraphy readings confirmed some subjective reports. On average, adults with ADHD took longer to get to sleep (large effect size 0.80) and had lower sleep efficiency (medium-to-large effect size 0.68). They also spent more time awake (small-to-medium effect size 0.40). There was little to no sign of publication bias and there was little heterogeneity among studies.
None of the polysomnography measurements, however, found any significant differences between adults with and without ADHD. All effect sizes were small (under 0.20), and none came close to being statistically significant.
There were four instances where measurement criteria overlapped those from actigraphy and self-reporting, with varying degrees of agreement and divergence. There was no significant difference in total sleep time, matching findings from both the questionnaires and actigraphy. On percent time spent awake, polysomnography found little to no effect size with no statistical significance, whereas actigraphy found a small-to-medium effect size that did not quite reach significance, and self-reporting came up with a medium effect size that was statistically significant. Sleep onset latency and sleep efficiency, for which questionnaires and actigraphy found medium-to-large effects, the polysomnography measurements found little to none, with no statistical significance.
Polysomnography found no significant differences in stage 1-sleep, stage 2-sleep, slow-wave sleep, and REM sleep. Except for slow-wave sleep, there was no sign of publication bias. Heterogeneity was generally minimal.
One problem with the extant literature is that many studies did not take medication status into account.
The authors concluded, "future studies should be conducted in medicatio- naïve samples of adults with and without ADHD matched for comorbid psychiatric disorders and other relevant demographic variables."
In summary, these findings provide robust evidence that ADHD adults report a variety of sleep problems. In contrast, objective demonstrations of sleep abnormalities have not been consistently demonstrated. More work in medication-naïve samples is needed to confirm these conclusions.
Amparo DiÌaz-RomaÌn, Raziya Mitchell, SamueleCortese, "Sleep in adults with ADHD: Systematic review and meta-analysis of subjective and objective studies," Neuroscience and biobehavioral reviews, vol. 89, p. 61-71(2018).