November 21, 2021

Safety of long-term methylphenidate treatment of adults with ADHD

The Comparison of Methylphenidate and Psychotherapy in adult ADHD Study (COMPAS) was a prospective, randomized multicenter clinical trial, comparing methylphenidate (MPH) with placebo in combination with cognitive-behavioral group psychotherapy or (GPT) individual clinical management (CM), the latter two being active controls. This was a year-long trial.

The German study team randomly assigned 433 participants with adult ADHD to each of the four study groups. As this was a 2 x 2 matrix trial, each study group included both one pharmacological intervention (MPH or placebo) and one psychological intervention (GPT or CM).

GPT included mindfulness training, skills for stress management, emotion regulation, and time management as well as behavioral analyses. CM sessions focused on participants' current concerns and medication.

As is usual in such trials, the number of participants decreased throughout the study as some individuals dropped out. At 13 weeks, 337 participants were still taking their study medication.

Both MPH and placebo were started at 10 mg doses, then up-titrated depending on clinical response. After 13 weeks, the mean MPH dose had risen to 50 mg, and the mean dose of placebo to 58 mg.

Safety

Among those taking MPH, 96 percent of participants reported at least one adverse event. Among those on placebo, the equivalent figure was 88 percent.

The principal adverse events occurring significantly more frequently in the MPH group were decreased appetite (22 vs. 3.8 %), dry mouth (15 vs. 4.8 %), palpitations (13 vs. 3.3 %), gastrointestinal infection (11 vs. 4.8 %), agitation (11 vs. 3.3 %), restlessness (10 vs. 2.9 %), excessive sweating, rapid heartbeat, and weight decrease (all 6.3 vs. 1.9 %).

The only adverse event that occurred significantly more frequently in the placebo group was a temporary loss of consciousness caused by a fall in blood pressure (2.4 vs. 0%).

Serious adverse events were infrequent in both groups, affecting 7.3 percent of those in the MPH group and 4.3 percent of those in the placebo group. The difference between groups was not statistically significant. There were no deaths.

While patients on MPH lost an average of 1.2 Kg during the year, those on placebo remained constant (gained 0.3 Kg). Changes in blood pressure were negligible in both groups. Average heart rate rose by 3 beats per minute in the MPH group, versus a 1 beat per minute decline in the placebo group. There were no significant differences in clinically relevant electrocardiogram abnormalities between the two treatment groups.

Turning to psychological interventions, 90 percent of participants in the GPT group and 94 percent in the CM group experienced at least one adverse event. Differences between the two groups were not statistically significant. Serious adverse events occurred in 3.9% of the GPT participants and 7.7 percent of the CN participants, but again the difference between groups was not statistically significant. There were no clinically relevant changes in weight, blood pressure, or heart rates in these groups throughout the study.

The study team found no modulating effects of either form of psychological treatment on the distribution of adverse events under MPH and placebo treatment.

The authors concluded, "adverse events were found more frequently in patients receiving MPH compared to placebo and were mostly attributable to the centrally stimulating and sympathomimetic action of MPH, including agitation, restlessness, dry mouth, decreased appetite, palpitations, tachycardia [rapid heartbeat], and hyperhidrosis [excessive sweating]. About these adverse events, a causal relationship with MPH seems likely, supported by both the pharmacological effects of MPH as well as previous safety data. ... It is important to note that patients receiving MPH in COMPAS significantly profited from the medication about the reduction of ADHD symptom load, thus the risks of adverse events have to be weighed against the clear benefits. ... Premature termination of MPH due to an adverse event as major reason occurred in less than 10 % of patients and was not statistically significantly different from placebo."

Bernhard Kis, Caroline Lücke, Mona Abdel-Hamid, Philipp Heßmann, Erika Graf, Mathias Berger, Swantje Matthies, Patricia Borel, Esther Sobanski, Barbara Alm, Michael Rösler, Wolfgang Retz, Christian Jacob, Michael Colla, Michael Huss, Thomas Jans, Ludger Tebartz van Elst, Helge H. O. Müller, Alexandra Philipsen, "Safety Profile of Methylphenidate Under Long-Term Treatment in Adult ADHD Patients - Results of the COMPAS Study," Pharmacopsychiatry (2020), https://doi.org/10.1055/a-1207-9851.

Related posts

No items found.

NEW STUDY: Understanding the Gap Between ADHD Clinical Trials and Real-World Patients

Background 

ADHD (Attention-Deficit/Hyperactivity Disorder) is one of the most studied neurodevelopmental conditions, with many clinical trials evaluating the effectiveness and safety of various medications. These trials, known as randomized controlled trials (RCTs), are considered the gold standard for assessing treatments. However, strict eligibility criteria often exclude many real-world patients, raising questions about whether the findings from these trials apply to everyday clinical settings.

Our latest study sheds light on this issue, revealing just how many individuals with ADHD might be excluded from RCTs and the impact this exclusion has on their treatment outcomes. 

Method

Researchers used Swedish national registries to analyze data from 189,699 individuals diagnosed with ADHD who started medication between 2007 and 2019. They applied exclusion criteria from 164 international RCTs to identify who would have been considered ineligible for these trials in order to determine the proportion of individuals with ADHD who would not meet the eligibility criteria for RCTs.  

Key Findings

Many Patients Are Ineligible for Clinical Trials:

  • Over half (53%) of the study population would have been ineligible for ADHD medication trials.
  • Adults were most likely to be excluded (74%), followed by adolescents (35%) and children (21%).

Ineligible Patients Face Unique Challenges:

  • Treatment Switching: Ineligible individuals were more likely to switch medications within the first year (14% higher likelihood compared to eligible patients).
  • Medication Discontinuation: They were slightly less likely to stop taking their medication during the first year.

Higher Risk of Adverse Outcomes:

  • Ineligible patients experienced significantly higher rates of psychiatric hospitalizations and health issues such as depression, anxiety, and substance use disorders. For instance:some text
    • Psychiatric hospitalizations: Nearly 10 times more likely.
    • Specialist visits for substance use disorders: About 15 times more likely.
    • Anxiety-related visits: Over 11 times more likely.

What This Means

These findings highlight a major gap between the controlled environments of clinical trials and the realities faced by individuals with ADHD in everyday life. While RCTs provide valuable insights, their restrictive criteria often exclude patients with more complex health profiles or co-existing conditions. This limits the generalisability of trial results, meaning that treatment guidelines based solely on RCTs may not fully address the needs of all patients.

Conclusion

This study demonstrated that a significant proportion of individuals with ADHD, particularly adults, do not meet the eligibility criteria for standard RCTs. These results emphasize the importance of bridging the gap between research settings and real-world applications. By recognizing and addressing the limitations of RCTs, we can work towards more equitable and effective ADHD treatment strategies for everyone.

January 14, 2025

Where Does ADHD Fit in the Psychopathology Hierarchy? A Symptom-Focused Study

NEWS TUESDAY: Where Does ADHD Fit in the Psychopathology Hierarchy? A Symptom-Focused Study

Background:

Our understanding of Attention-deficit/hyperactivity disorder (ADHD) has grown and evolved considerably since it first appeared in the DSM-II as “Hyperkinetic Reaction of Childhood.”  This study aimed to find the disorder’s placement within the modern psychopathology classification systems like the Hierarchical Taxonomy Of Psychopathology (HiTOP). 

The HiTOP model aims to address limitations of traditional classification systems for mental illness, such as the DSM-5 and ICD-10, by organizing psychopathology according to evidence from research on observable patterns of mental health problems.. Is ADHD best categorized under externalizing conditions, neurodevelopmental disorders, or something else entirely? A recent study by Zheyue Peng, Kasey Stanton, Beatriz Dominguez-Alvarez, and Ashley L. Watts takes a closer look at this question using a symptom-focused approach.

The Study:

Traditionally, ADHD has been associated with externalizing behaviors, such as impulsivity and hyperactivity, or with neurodevelopmental traits, like cognitive delays. However, this study challenges the idea of placing ADHD into a single category. Instead, it maps ADHD symptoms across three major psychopathology spectra: externalizing, neurodevelopmental, and internalizing.

The findings reveal that ADHD symptoms don’t fit neatly into one box. For example, symptoms like impulsivity, poor school performance, and low perseverance were strongly associated with externalizing behaviors. On the other hand, cognitive disengagement (e.g., daydreaming, blank staring) and immaturity were closely linked to neurodevelopmental challenges. Interestingly, cognitive disengagement also showed ties to internalizing symptoms, such as anxiety or depression.

This research underscores the complexity of ADHD. Rather than treating ADHD as a single, unitary construct, the study advocates for a symptom-based approach to better understand and treat individuals. By acknowledging that ADHD symptoms relate to multiple psychopathology spectra, clinicians and researchers can move toward more nuanced classification systems and targeted interventions.

Conclusion: 

Ultimately, this study highlights the need for modern systems to move beyond rigid categories and adopt a more flexible, symptom-focused framework for understanding ADHD’s place in psychopathology.

January 6, 2025

Meta-analyses Find Dose-response Association Between Lead Exposure and Subsequent ADHD

Meta-analyses Find Dose-response Association Between Lead Exposure and Subsequent ADHD

Background:

Exposure to heavy metals like lead, arsenic, mercury, cadmium, and manganese is known to harm developing nervous systems. However, past studies on whether heavy metals specifically increase the risk of ADHD have shown mixed results.

A research team from China (Gu et al., 2024) reviewed medical studies and conducted meta-analyses to better understand this issue.

Methods:

The team included studies on children and teens, focusing on cohort studies, case-control studies, and cross-sectional studies. They only used articles written in English and required validated biomonitoring (like blood tests) to measure heavy metal exposure. ADHD diagnoses had to come from clinical evaluations.

To be included, studies had to report effect sizes such as odds ratios and relative risks with confidence intervals. The team focused on comparisons between groups with high, low, or no exposure, which made it harder to analyze dose-response relationships.

They also evaluated the quality of each study. All cohort studies were rated high-quality. Of the 15 case-control studies, 6 were high-quality, and 9 were moderate-quality. Among cross-sectional studies, only 2 were high-quality, and the rest were moderate-quality.

Key Findings:
  1. Lead Exposure and ADHD:some text
    • A meta-analysis of 22 studies with over 20,000 participants found that early exposure to lead was linked to about twice the odds of an ADHD diagnosis compared to unexposed children.
    • However, results varied widely among studies, and signs of publication bias were detected. After adjusting for this bias, the increased odds dropped to about 50%.
    • A dose-response relationship was found:some text
      • Blood lead levels of 2.5 µg/dL increased ADHD risk by 1.8 times.
      • Levels of 5 µg/dL increased the risk 2.5 times.
      • Levels of 7.5 µg/dL increased the risk 2.75 times.
      • Levels of 10 µg/dL tripled the risk.
  2. Other Metals:some text
    • No significant links were found between ADHD and exposure to arsenic, mercury, cadmium, or manganese. Fewer studies were available for these metals, and participant numbers were much smaller:some text
      • Arsenic exposure: 25% higher odds of ADHD (4 studies, 3,116 participants).
      • Mercury exposure: 25% higher odds (6 studies, 2,916 participants).
      • Cadmium exposure: 25% higher odds (5 studies, 2,419 participants).
      • Manganese exposure: 45% higher odds (6 studies, 1,664 participants).
  3. Austrian Study: An Austrian team (Rosenauer et al., 2024) also conducted a meta-analysis on lead exposure and ADHD. They included 14 studies with over 7,600 participants and found:some text
    • Lead exposure increased the odds of ADHD by about 25%.
    • Studies focusing on higher lead levels found a 43% increased risk, supporting a dose-response relationship.
    • Study results were consistent, with no signs of publication bias.
Conclusion:

There was no evidence linking ADHD to other heavy metals like arsenic, mercury, cadmium, or manganese.  Both meta-analyses suggest that lead exposure is associated with the risk for ADHD.  However, because these studies cannot rule out other explanations, one cannot conclude that lead exposure causes ADHD.  For example, other work shows that people with ADHD are likely to have lower incomes than those without ADHD.  

January 17, 2025