June 22, 2021

Is There Any Relationship Between Artificial Food Colors and ADHD?

Several meta-analyses have assessed this question by computing the Standardized Mean Difference or SMD statistic. The SMD is a measure that allows us to compare different studies. For context, the effect of stimulant medication for treating ADHD is about 0.9.  SMDs less than 0.3 are considered low, between 0.3 to 0.6 medium, and anything greater than high.


A 2004 meta-analysis combined the results of fifteen studies with a total of 219 participants and found a small association(SMD = .28, 95% CI .08-.49) between consumption of artificial food colors by children and increased hyperactivity. Excluding the smallest and lowest quality studies further reduced the SMD to .21, and a lower confidence limit of .007 also made it barely statistically significant. Publication bias was indicated by an asymmetric funnel plot. No effort was made to correct the bias.


A 2012 meta-analysis by Nigg et al. combined twenty studies with a total of 794 participants and again found a small effect size (SMD =.18, 95% CI .08-.29). It likewise found evidence of publication bias. Correcting for the bias led to a tiny effect size at the outer margin of statistical significance (SMD = .12, 95% CI .01-.23). Restricting the pool to eleven high-quality studies with 619 participants led to a similarly tiny effect size that fell just outside the 95% confidence interval (SMD = .13, CI =0-.25, p = .053). The authors concluded, "Overall, a mixed conclusion must be drawn. Although the evidence is too weak to justify action recommendations absent a strong precautionary stance, it is too substantial to dismiss."

In 2013 a European ADHD Guidelines Group consisting of 21 researchers (Sonuga-Barke et al.) performed a systematic review and meta-analysis that examined the efficacy of excluding artificial colors from the diets of children and adolescents as a treatment for ADHD. While many interventions showed benefits in unblinded assessments, only artificial food color exclusion and, to a lesser extent, free fatty acid supplementation remained effective under blinded conditions. The findings suggest that eliminating artificial food dyes may meaningfully reduce ADHD symptoms in some children, though it should be noted that the positive results were mostly seen in children with other food sensitivities.


The research to date does suggest a small effect of artificial food colors in aggravating symptoms of hyperactivity in children, and a potential beneficial effect of excluding these substances from the diets of children and adolescents, but the evidence is not very robust. More studies with greater numbers of participants, and better control for the effects of ADHD medications, will be required for a more definitive finding.


In the meantime, given that artificial food colors are not an essential part of the diet, parents could consider excluding them from their children's meals, since doing so is risk-free, and the cost (reading labels) is negligible.

Joel T. Nigg, Kara Lewis, Tracy Edinger, Michael Falk, “Meta-Analysis of Attention-Deficit/Hyperactivity Disorder attention-Deficit/Hyperactivity Disorder Symptoms, Restriction Diet, and synthetic Food Color Additives,” Journal of The American Academy of Child & Adolescent Psychiatry (2012), Vol.51, No. 1, 86-97.David W. Schab and Nhi-Ha T. Trinh, “Do Artificial FoodColors Promote Hyperactivity in Children with Hyperactive Syndromes? Aneta-Analysis of Double-Blind Placebo-Controlled Trials,” Developmental and behavioral Pediatrics(2004), Vol. 25, No. 6, 423-434.Edmund J.S. Sonuga-Barke et al., “NonpharmacologicalInterventions for ADHD: Systematic Review and Meta-Analyses of RandomizedControlled Trials of Dietary and Psychological Treatments,” American Journal of Psychiatry(2013), 170:275-289.

Related posts

Do Some Foods Cause ADHD? Does Dieting Help?

Do Some Foods Cause ADHD? Does Dieting Help?

If we are to read what we believe on the Internet, dieting can cure many of the ills faced by humans. Much of what is written is true. Changes in dieting can be good for heart disease, diabetes, high blood pressure, and kidney stones to name just a few examples. But what about ADHD? Food elimination diets have been extensively studied for their ability to treat ADHD. They are based on the very reasonable idea that allergies or toxic reactions to foods can have effects on the brain and could lead to ADHD symptoms.

Although the idea is reasonable, it is not such an easy task to figure out what foods might cause allergic reactions that could lead to ADHD symptoms. Some proponents of elimination diets have proposed eliminating a single food, others include multiple foods, and some go as far as to allow only a few foods to be eaten to avoid all potential allergies. Most readers will wonder if such restrictive diets, even if they did work, are feasible. That is certainly a concern for very restrictive diets.

Perhaps the most well-known ADHD diet is the Feingold diet(named after its creator). This diet eliminates artificial food colorings and preservatives that have become so common in the western diet. Some have claimed that the increasing use of colorings and preservatives explains why the prevalence of ADHD is greater in Western countries and has been increasing over time. But those people have it wrong. The prevalence of ADHD is similar around the world and has not been increasing over time. That has been well documented but details must wait for another blog.

The Feingold and other elimination diets have been studied by meta-analysis. This means that someone analyzed several well-controlled trials published by other people. Passing the test of meta-analysis is the strongest test of any treatment effect. When this test is applied to the best studies available, there is evidence that the exclusion of fool colorings helps reduce ADHD symptoms. But more restrictive diets are not effective. So removing artificial food colors seems like a good idea that will help reduce ADHD symptoms. But although such diets ‘work’, they do network very well. On a scale of one to 10where 10 is the best effect, drug therapy scores 9 to 10 but eliminating food colorings scores only 3 or 4. Some patients or parents of patients might want this diet change first in the hopes that it will work well for them. That is a possibility, but if that is your choice, you should not delay the more effective drug treatments for too long in the likely event that eliminating food colorings is not sufficient. You can learn more about elimination diets from Nigg, J. T., and K.Holton (2014). "Restriction and elimination diets in ADHD treatment."Child Adolesc Psychiatr Clin N Am 23(4): 937-953.

Keep in mind that the treatment guidelines from professional organizations point to ADHD drugs as the first-line treatment for ADHD. The only exception is for preschool children where medication is only the first-line treatment for severe ADHD; the guidelines recommend that other preschoolers with ADHD be treated with non-pharmacologic treatments, when available. You can learn more about non-pharmacologic treatments for ADHD from a book I recently edited: Faraone, S. V. &Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child AdolescPsychiatr Clin N Am 23, xiii-xiv.

March 20, 2021

Can ADHD be Treated With Mindfulness-Based Interventions?

How Effective are Mindfulness-Based Interventions in Treating ADHD?

Mindfulness has been defined as “intentionally directing attention to present moment experiences with an attitude of curiosity and acceptance.” Mindfulness-based interventions (MBIs) aim to improve mindfulness skills.

A newly-published meta-analysis of randomized controlled trials (RCTs) by a team of British neurologists and psychiatrists explores the effectiveness of MBIs in treating a variety of mental health conditions in children and adolescents. Among those conditions is the attention deficit component of ADHD.

A comprehensive literature search identified studies that met the following criteria:

1)    The effects of mindfulness were compared against a control condition – either no contact, waitlist, active, or attention placebo. The waitlist means the control group receives the same treatment after the study concludes. Active control means that a known, effective treatment (as opposed to a placebo) is compared to an experimental treatment. Attention placebo means that controls receive a treatment that mimics the time and attention received by the treatment group but is believed not to have a specific effect on the subjects. Participants were randomly assigned to the control condition.

2)    The MBI was delivered in more than one session by a trained mindfulness teacher, involved sustained meditation practice, and it was not mixed in with another activity such as yoga.

Eight studies evaluating attention deficit symptoms, with a combined total of 1,158 participants, met inclusion criteria. The standardized mean difference (SMD) was 0.19, with a 95% confidence range of 0.04 to 0.34 (p = .02). That indicates a small effect size for MBIs in reducing attention deficit symptoms. Heterogeneity was low (I2 = 35, p =.15), and the Egger test showed little sign of publication bias (p = 0.42).

When looking only at studies with active controls, five studies with a total of 787 participants yielded an SMD of 0.13, with a 95% confidence interval of -0.01 to 0.28 (p = .06), indicating a tiny effect size that failed to reach significance. Active controls most commonly received health education, with a few receiving social responsibility training or Hatha yoga.

Overall, this meta-analysis suggests limited effectiveness, especially when compared with active controls.  If MBIs are effective for ADHD, their effect on symptoms is very small.  Thus, such treatments should not be used in place of the many well-validated, evidenced-based therapies available. Whether longer periods of MBI (training times varied between 2 and 18 hours spread out over 2 to 24 weeks) might result in greater effect sizes remains unexplored

March 2, 2021

Population Study Finds Association Between ADHD and Obesity in Adolescents

Israeli nationwide population study finds association between ADHD and obesity in adolescents

After noting that the association between ADHD and obesity has been called into question because of small sample sizes, wide age ranges, self-reported assessments, and inadequate attention to potential confounders, an Israeli study team set out "to assess the association between board-certified psychiatrist diagnoses of ADHD and measured adolescent BMI [body mass index] in a nationally represented sample of over one million adolescents who were medically evaluated before mandatory military service."

The team distinguished between severe and mild ADHD. It also focused on a single age group.

All Israelis are subject to compulsory military service. In preparation for that service, military physicians perform a thorough medical evaluation. Trained paramedics recorded every conscript's height and weight.

The study cohort was divided into five BMI percentile groups according to the U.S. Centers for Disease Control and Prevention's BMI percentiles for 17-year-olds, and further divided by sex: <5th percentile (underweight), 5th-49th percentile (low-normal), 50th-84th percentile (high normal), 85th-94th percentile (overweight) and ≥95th (obese). Low-normal was used as the reference group.

Adjustments were made for sex, birth year, age at examination, height, country of birth (Israeli or other), socioeconomic status, and education level.

In the fully adjusted results, those with severe ADHD were 32% more likely to be overweight and 84% more likely to be obese than their typically developing peers. Limiting results to Israeli-born conscripts made a no difference.

Male adolescents with mild ADHD were 24% more likely to be overweight, and 42% more likely to be obese. Females with mild ADHD are 33% more likely to be overweight, and 42% more likely to be obese. Again, the country of birth made no difference.

The authors concluded, that both severe and mild ADHD was associated with an increased risk for obesity in adolescents at the age of 17 years. The increasing recognition of the persistence of ADHD into adulthood suggests that this dual morbidity may have a significant impact on the long-term health of individuals with ADHD, thus early preventive measures should be taken.

January 6, 2022

Population Study Finds Strong Association Between Assisted Reproductive Technologies and Offspring ADHD

Taiwanese Nationwide Population Study Finds Strong Association Between Assisted Reproductive Technologies and Offspring ADHD

Background: 

Since the first in vitro fertilization (IVF) in 1978, assisted reproductive technology (ART) has led to over 10 million births worldwide.  

There are four types of embryo transfers, depending on whether they are fresh or frozen, and on their developmental stage. 

Fresh cleavage stage embryos are transferred on day 2 or 3 following fertilization and typically contain four to eight relatively large, undifferentiated cells. Fresh blastocyst embryos are transferred on day 5 or 6 after fertilization. At this point, they have developed over a hundred cells and have differentiated into two types: the inner cell mass, which develops into the fetus, and the outer cell layer, which forms the placenta. 

Globally, more children are now born through assisted reproductive technology using frozen-thawed embryo transfer than fresh embryo transfer.  

Research suggests that ART-conceived offspring may face increased risks of cardiovascular, musculoskeletal, chromosomal, urogenital diseases, and cancers. Might they also be at increased risk for ADHD? 

Study:

Taiwan’s single-payer health insurance covers over 99% of people and records all their healthcare activity. Since 1998, it has kept an ART database for all couples registered for IVF treatment. 

A Taiwanese research team reviewed all records for the five-year period from 2013 through 2017, ultimately analyzing 3,125 live singleton births from fresh cleavage stages, 1,332 from fresh blastocysts, 1,465 from frozen cleavage stages, and 4,708 from frozen blastocysts, alongside 878,643 naturally conceived singleton births. 

The team controlled for the following potential confounders: pregnancy-induced hypertension, chronic hypertension, diabetes mellitus, gestational diabetes mellitus, unhealthy lifestyle, placenta previa, placenta abruption, preterm premature rupture of membrane, and postpartum hemorrhage. 

Results:

With these adjustments, cleavage stage embryo transfers, whether fresh or frozen, were associated with a seven-fold higher rate of ADHD diagnosis in offspring than natural conception. 

Frozen blastocyst embryo transfers were likewise linked to a seven-fold increase in ADHD diagnoses in offspring compared to natural conception. Notably, fresh blastocyst transfers showed a 19-fold increase, likely due to the smaller number of cases in this category. 

The team concluded, “Compared to natural conception, ART is associated with higher risks, particularly for preterm birth, ADHD, and developmental delay.” 

Conclusion: 

This large national cohort suggests that ART-conceived singletons face higher rates of several adverse outcomes, including preterm birth, ADHD, and developmental delay. Clinicians and prospective parents should therefore weigh these potential associations when counseling and planning care, prioritize optimized ART protocols and perinatal management, and ensure early developmental surveillance for ART-conceived children so concerns can be identified and addressed promptly.

It is important to note that the findings also point to the likely contribution of underlying parental infertility in these developmental outcomes. Future research should aim to disentangle parental- versus procedure-related risks to clarify absolute risk magnitudes. As always, associations of this time should not be interpreted as causal due to the inability of observational studies to rule out all possible confounding factors.

October 1, 2025

Why Do So Many Young People Miss an ADHD Diagnosis? Insights from a New Study

Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental conditions, yet many young people, especially girls, receive a diagnosis late or not at all. This matters, because a delayed diagnosis often means missed opportunities for support, treatment, and improved long-term outcomes. A recent study by Barclay and colleagues (2024) sheds new light on why ADHD recognition is inconsistent, and what we can do about it.

The Study:

Researchers analyzed data from nearly 10,000 children in the UK Millennium Cohort Study. They compared children whose ADHD was recognized early (ages 5–7), later (ages 11–14), or not recognized at all, despite evidence of symptoms. The team also looked at differences between boys and girls to better understand why diagnosis patterns vary by sex.

Key Findings:
  1. Severity Drives Earlier Recognition
    Children who were diagnosed at a younger age often had more visible difficulties: emotional outbursts, peer conflict, conduct issues, and lower cognitive scores. In other words, the “louder” and more disruptive the symptoms, the more likely ADHD was flagged early.

  2. “Quieter” ADHD May Be Overlooked
    Children with stronger prosocial skills or higher cognitive ability were less likely to be recognized, even if they had clear ADHD symptoms. These children may be able to “mask” their difficulties, or adults may misinterpret their struggles as personality quirks rather than signs of ADHD.

  3. Emotional Dysregulation Matters
    Emotional dysregulation—big swings in mood, difficulty calming down, intense frustration—was strongly linked to recognized ADHD in boys, but not in girls. This suggests that clinicians may pay closer attention to these behaviors in boys, while overlooking them in girls.

  4. Co-occurring Conditions Can Influence Diagnosis
    Children with autism were more likely to have their ADHD identified. On the flip side, those who engaged in more physical activity were slightly less likely to be recognized, though the reasons for this are not yet clear.

What This Means for Clinicians:

The study highlights the importance of looking beyond the “classic” hyperactive child stereotype when considering ADHD. Clinicians should:

  • Pay attention to symptoms of emotional dysregulation, even if they are not part of standard diagnostic checklists.

  • Consider ADHD in children with good grades or strong social skills if other symptoms are present.

  • Be mindful of gender differences, since girls may be more likely to internalize symptoms or present with inattentiveness rather than hyperactivity.

What This Means for Parents and Patients:

If you’re a parent, it’s important to trust your observations. If your child struggles with focus, organization, or emotional regulation—even if they are doing well academically or socially—these could still be signs of ADHD. Advocating for an evaluation can make a big difference.

Moving Forward

This study makes clear that ADHD is not one-size-fits-all. Recognition often depends on how symptoms show up, how disruptive they appear, and even the child’s gender. By broadening our awareness and refining our screening practices, we can ensure that fewer children slip through the cracks and more receive the support they need early in life.

September 30, 2025

ADHD Medication and Academic Achievement: What Do We Really Know?

Parents and teachers often ask: Does ADHD medication actually improve grades and school performance? The answer is: yes, but with important limitations. Medications are very effective at reducing inattention, hyperactivity, and impulsivity but their impact on long-term academic outcomes like grades and test scores is not as consistent.

In the Classroom

The medications for ADHD consistently: Improve attention, reduce classroom disruptions, increase time spent on-task and help children complete more schoolwork and homework. Medication can help children with ADHD access learning by improving the conditions for paying attention and persisting with work.

Does Medication Improve Test Scores and Grades?

This is where the picture gets more complicated.  Medications have  stronger effect on how much work is completed but a weaker effect on accuracy. Many studies show that children on medication attempt more problems in reading, math, and spelling, but the number of correct answers doesn’t always improve as much. Some studies find small but significant improvements in national exam scores and higher education entrance tests during periods when children with ADHD are medicated.

Grades improve, as well, but modestly. Large registry studies in Sweden show that students who consistently take medication earn higher grades than those who don’t. However, these gains usually do not close the achievement gap with peers who do not have ADHD.

Keep in mind that small improvements for a group as a whole mean that some children are benefiting greatly from medication and others not at all.  We have no way of predicting which children will improve and which do not. 

Medication Alone Isn’t Enough

Academic success depends on more than just reducing inattention, hyperactivity and impulsivity. Skills like organization, planning, studying, and managing long-term projects are also critical.  Medication cannot teach these skills.

So, in addition to medication, the patient's treatment program should include educational support (tutoring, structured study skills programs), behavioral interventions (parent training, classroom management strategies), and accommodations at school (extra time, reduced distractions, organizational aids) Parents should discuss with their prescriber which of these methods would be appropriate.

Conclusions 

ADHD medication is a powerful tool for reducing symptoms and supporting learning. It improves test scores and grades for some children, especially when taken consistently. But it is not a magic bullet for academic success. The best results come when medication is combined with educational and behavioral supports that help children build the skills they need to thrive in school and beyond.

September 17, 2025