August 25, 2021

Are there adverse effects to long-term treatment of ADHD with methylphenidate?

Methylphenidate (MPH) is one of the most widely-prescribed medications for children. Given that ADHD frequently persists over a large part of an individual's lifespan, any side effects of medication initiated during childhood may well be compounded over time. With funding from the European Union, a recently released review of the evidence looked for possible adverse neurological and psychiatric outcomes.

From the outset, the international team recognized a challenge: ADHD severity may be an important potential confounder, as it may be associated with both the need for long-term MPH therapy and high levels of underlying neuropsychiatric comorbidity. Their searches found a highly heterogeneous evidence base, which made meta-analysis inadvisable. For example, only 25 of 39 group studies reported the presence or absence of comorbid psychiatric conditions, and even among those, only one excluded participants with comorbidities. Moreover, in only 24 of 67 studies was the type of MPH used (immediate or extended-release) specified. The team, therefore, focused on laying out an evidence map to help determine priorities for further research.

The team found the following breakdown for specific types of adverse events:

·        Low mood/depression. All three non-comparative studies found MPH safe. Two large cohort studies, one with over 2,300 participants, and the other with 142,000, favored MPH over the non-stimulant atomoxetine. But many other studies, including a randomized controlled trial (RCT), had unclear results. Conclusion: the evidence base regarding mood outcomes from long-term MPH treatment is relatively strong, includes two well-powered comparative studies, and tends to favor MPH.

·        Anxiety. Here again, all three non-comparative studies found MPH safe. But only two of seven comparative studies favored MPH, with the other five having unclear results. Conclusion: while the evidence about anxiety as an outcome of long-term MPH treatment tends to favor MPH, the evidence base is relatively weak.

·        Irritability/emotional reactivity. A large cohort study with over 2,300 participants favored MPH over atomoxetine. Conclusion: the evidence base is limited, although it includes one well-powered study that found in favor of MPH over atomoxetine.

·        Suicidal behavior/ideation. There were no non-comparative studies, but all five comparative studies favored MPH. That included three large cohort studies, with a combined total of over a hundred thousand participants, that favored MPH over atomoxetine. Conclusion: the evidence base is relatively strong, and tends to favor MPH.

·        Bipolar disorder. A very large cohort study, with well over a quarter-million participants, favored MPH over atomoxetine. A much smaller cohort study comparing MPH with atomoxetine, with less than a tenth the number of participants, pointed toward caution. Conclusion: the evidence base is limited and unclear, although it includes two well-powered studies.

·        Psychosis/psychotic-like symptoms. By far the largest study, with over 145,000 participants, compared MPH with no treatment, and pointed toward caution. A cohort study with over 2,300 participants favored MPH over atomoxetine. Conclusion: These findings indicate that more research is needed into the relationship between ADHD and psychosis, and into whether MPH moderates that risk, as well as research into individual risk factors for MPH-related psychosis in young people with ADHD.

·        Substance use disorders. A cohort study with over 20,000 participants favored MPH over anti-depressants, anti-psychotics, and no medication. Other studies looking at dosages and durations of treatment, age at treatment initiation, or comparing with no treatment or alternative treatment, all favored MPH except a single study with unclear results. Conclusion: the evidence base is relatively strong, includes one well-powered study that compared MPH with antipsychotic and antidepressant treatment, and tends to favor MPH.

·        Tics and other dyskinetic. Of four non-comparative studies, three favored MPH, the other, with the smallest sample size, urged caution. In studies comparing with dexamphetamine, pemoline, Adderall, or no active treatment, three had unclear results and two pointed towards caution. Conclusion: more research is needed regarding the safety and management of long-term MPH in those with comorbidities or tic disorder.

·        Seizuresor EEG abnormalities. With one exception, the studies had small sample sizes. The largest, with over 2,300 participants, compared MPH with atomoxetine, with inconclusive results. Two small studies found MPH safe, one had unclear results, and two others pointed towards caution. Conclusion: While the evidence is limited and unclear, the studies do not indicate evidence for seizures as an AE of MPH treatment in children with no prior history more research is needed into the safety of long-term MPH in children and young people at risk of seizures.

·        Sleep Disorders. All three non-comparative studies found MPH safe, but the largest cohort study, with over 2,300 participants, clearly favored atomoxetine. Conclusion: more research is needed into the relationship between ADHD, sleep, and long-term MPH treatment.

·        Other notable psychiatric outcomes. Two noncomparative studies, with 118 and 289participants, found MPH safe. A cohort study with over 700 participants compared with atomoxetine, with inconclusive results. Conclusion: there is limited evidence regarding long-term MPH treatment and another neuropsychiatric outcome, and that further research may be needed into the relationship between long-term MPH treatment and aggression/hostility.

Although this landmark review points to several gaps sins in the evidence base, it mainly supports prior conclusions of the US Food antidrug Administration (FDA) and other regulatory agencies (based on short-term randomized controlled trials) that MPH is safe for the treatment of ADHD in children and adults.  Given that MPH has been used for ADHD for over fifty years and that the FDA monitors the emergence of rare adverse events, patients, parents, and prescribers can feel confident that the medication is safe when used as prescribed.

Helga Krinzinger, Charlotte L Hall, Madeleine JGroom, Mohammed T Ansari, Tobias Banaschewski, Jan K Buitelaar, Sara CarucciDavid Coghill, Marina Danckaerts, Ralf W Dittmann, Bruno Falissard, PeterGaras, Sarah K Inglis, Hanna Kovshoff, Puja Kochhar, Suzanne McCarthy, PeterNagy, Antje Neubert, Samantha Roberts, Kapil Sayal, Edmund Sonuga-Barke , Ian CK Wong , Jun Xia, Alexander Zuddas, Chris Hollis, Kerstin Konrad, Elizabeth Biddle and the ADDUCE Consortium,Neurological and psychiatric adverse effects of long-term methylphenidate treatment in ADHD: A map of the current evidence, Neuroscience and Biobehavioral Reviews(2019)DOI:https://doi.org/10.1016/j.neubiorev.2019.09.023

Related posts

No items found.

NEW STUDY: Understanding the Gap Between ADHD Clinical Trials and Real-World Patients

Background 

ADHD (Attention-Deficit/Hyperactivity Disorder) is one of the most studied neurodevelopmental conditions, with many clinical trials evaluating the effectiveness and safety of various medications. These trials, known as randomized controlled trials (RCTs), are considered the gold standard for assessing treatments. However, strict eligibility criteria often exclude many real-world patients, raising questions about whether the findings from these trials apply to everyday clinical settings.

Our latest study sheds light on this issue, revealing just how many individuals with ADHD might be excluded from RCTs and the impact this exclusion has on their treatment outcomes. 

Method

Researchers used Swedish national registries to analyze data from 189,699 individuals diagnosed with ADHD who started medication between 2007 and 2019. They applied exclusion criteria from 164 international RCTs to identify who would have been considered ineligible for these trials in order to determine the proportion of individuals with ADHD who would not meet the eligibility criteria for RCTs.  

Key Findings

Many Patients Are Ineligible for Clinical Trials:

  • Over half (53%) of the study population would have been ineligible for ADHD medication trials.
  • Adults were most likely to be excluded (74%), followed by adolescents (35%) and children (21%).

Ineligible Patients Face Unique Challenges:

  • Treatment Switching: Ineligible individuals were more likely to switch medications within the first year (14% higher likelihood compared to eligible patients).
  • Medication Discontinuation: They were slightly less likely to stop taking their medication during the first year.

Higher Risk of Adverse Outcomes:

  • Ineligible patients experienced significantly higher rates of psychiatric hospitalizations and health issues such as depression, anxiety, and substance use disorders. For instance:some text
    • Psychiatric hospitalizations: Nearly 10 times more likely.
    • Specialist visits for substance use disorders: About 15 times more likely.
    • Anxiety-related visits: Over 11 times more likely.

What This Means

These findings highlight a major gap between the controlled environments of clinical trials and the realities faced by individuals with ADHD in everyday life. While RCTs provide valuable insights, their restrictive criteria often exclude patients with more complex health profiles or co-existing conditions. This limits the generalisability of trial results, meaning that treatment guidelines based solely on RCTs may not fully address the needs of all patients.

Conclusion

This study demonstrated that a significant proportion of individuals with ADHD, particularly adults, do not meet the eligibility criteria for standard RCTs. These results emphasize the importance of bridging the gap between research settings and real-world applications. By recognizing and addressing the limitations of RCTs, we can work towards more equitable and effective ADHD treatment strategies for everyone.

January 14, 2025

Where Does ADHD Fit in the Psychopathology Hierarchy? A Symptom-Focused Study

NEWS TUESDAY: Where Does ADHD Fit in the Psychopathology Hierarchy? A Symptom-Focused Study

Background:

Our understanding of Attention-deficit/hyperactivity disorder (ADHD) has grown and evolved considerably since it first appeared in the DSM-II as “Hyperkinetic Reaction of Childhood.”  This study aimed to find the disorder’s placement within the modern psychopathology classification systems like the Hierarchical Taxonomy Of Psychopathology (HiTOP). 

The HiTOP model aims to address limitations of traditional classification systems for mental illness, such as the DSM-5 and ICD-10, by organizing psychopathology according to evidence from research on observable patterns of mental health problems.. Is ADHD best categorized under externalizing conditions, neurodevelopmental disorders, or something else entirely? A recent study by Zheyue Peng, Kasey Stanton, Beatriz Dominguez-Alvarez, and Ashley L. Watts takes a closer look at this question using a symptom-focused approach.

The Study:

Traditionally, ADHD has been associated with externalizing behaviors, such as impulsivity and hyperactivity, or with neurodevelopmental traits, like cognitive delays. However, this study challenges the idea of placing ADHD into a single category. Instead, it maps ADHD symptoms across three major psychopathology spectra: externalizing, neurodevelopmental, and internalizing.

The findings reveal that ADHD symptoms don’t fit neatly into one box. For example, symptoms like impulsivity, poor school performance, and low perseverance were strongly associated with externalizing behaviors. On the other hand, cognitive disengagement (e.g., daydreaming, blank staring) and immaturity were closely linked to neurodevelopmental challenges. Interestingly, cognitive disengagement also showed ties to internalizing symptoms, such as anxiety or depression.

This research underscores the complexity of ADHD. Rather than treating ADHD as a single, unitary construct, the study advocates for a symptom-based approach to better understand and treat individuals. By acknowledging that ADHD symptoms relate to multiple psychopathology spectra, clinicians and researchers can move toward more nuanced classification systems and targeted interventions.

Conclusion: 

Ultimately, this study highlights the need for modern systems to move beyond rigid categories and adopt a more flexible, symptom-focused framework for understanding ADHD’s place in psychopathology.

January 6, 2025

Meta-analyses Find Dose-response Association Between Lead Exposure and Subsequent ADHD

Meta-analyses Find Dose-response Association Between Lead Exposure and Subsequent ADHD

Background:

Exposure to heavy metals like lead, arsenic, mercury, cadmium, and manganese is known to harm developing nervous systems. However, past studies on whether heavy metals specifically increase the risk of ADHD have shown mixed results.

A research team from China (Gu et al., 2024) reviewed medical studies and conducted meta-analyses to better understand this issue.

Methods:

The team included studies on children and teens, focusing on cohort studies, case-control studies, and cross-sectional studies. They only used articles written in English and required validated biomonitoring (like blood tests) to measure heavy metal exposure. ADHD diagnoses had to come from clinical evaluations.

To be included, studies had to report effect sizes such as odds ratios and relative risks with confidence intervals. The team focused on comparisons between groups with high, low, or no exposure, which made it harder to analyze dose-response relationships.

They also evaluated the quality of each study. All cohort studies were rated high-quality. Of the 15 case-control studies, 6 were high-quality, and 9 were moderate-quality. Among cross-sectional studies, only 2 were high-quality, and the rest were moderate-quality.

Key Findings:
  1. Lead Exposure and ADHD:some text
    • A meta-analysis of 22 studies with over 20,000 participants found that early exposure to lead was linked to about twice the odds of an ADHD diagnosis compared to unexposed children.
    • However, results varied widely among studies, and signs of publication bias were detected. After adjusting for this bias, the increased odds dropped to about 50%.
    • A dose-response relationship was found:some text
      • Blood lead levels of 2.5 µg/dL increased ADHD risk by 1.8 times.
      • Levels of 5 µg/dL increased the risk 2.5 times.
      • Levels of 7.5 µg/dL increased the risk 2.75 times.
      • Levels of 10 µg/dL tripled the risk.
  2. Other Metals:some text
    • No significant links were found between ADHD and exposure to arsenic, mercury, cadmium, or manganese. Fewer studies were available for these metals, and participant numbers were much smaller:some text
      • Arsenic exposure: 25% higher odds of ADHD (4 studies, 3,116 participants).
      • Mercury exposure: 25% higher odds (6 studies, 2,916 participants).
      • Cadmium exposure: 25% higher odds (5 studies, 2,419 participants).
      • Manganese exposure: 45% higher odds (6 studies, 1,664 participants).
  3. Austrian Study: An Austrian team (Rosenauer et al., 2024) also conducted a meta-analysis on lead exposure and ADHD. They included 14 studies with over 7,600 participants and found:some text
    • Lead exposure increased the odds of ADHD by about 25%.
    • Studies focusing on higher lead levels found a 43% increased risk, supporting a dose-response relationship.
    • Study results were consistent, with no signs of publication bias.
Conclusion:

There was no evidence linking ADHD to other heavy metals like arsenic, mercury, cadmium, or manganese.  Both meta-analyses suggest that lead exposure is associated with the risk for ADHD.  However, because these studies cannot rule out other explanations, one cannot conclude that lead exposure causes ADHD.  For example, other work shows that people with ADHD are likely to have lower incomes than those without ADHD.  

January 17, 2025