May 21, 2021
When my colleagues and I wrote our "Primer" about ADHD, the topic of brain mechanisms was a top priority. Because so much has been written about the ADHD brain, it is difficult to summarize. Yet we did it with the eight pictures reproduced here in one figure.
A quick overview of this figure shows you the complexity of ADHD's pathophysiology. There is no single brain region or neural circuit that is affected.
Figures (a) and (b) show you the main regions implicated by structural and functional neuroimaging studies.
As (c) shows, these regions are united by neural networks rich in noradrenalin (aka, norepinephrine) and dopamine, two neurotransmitters whose activity is regulated by medications that treat ADHD.
Figure (d) describes two functional networks.
The executive control network is, perhaps, the best-described network in ADHD. This network regulates behavior by linking the dorsal striatum with the dorsolateral prefrontal cortex. This network is essential for inhibitory control, self-regulation, working memory, and attention.
The Corticocerebellar network is a well-known regulator of complex motor skills. Data also suggest it plays a role in the regulation of cognitive functions.
Figure (d) describes the Reward Networks of the brain that link the ventral striatum with the prefrontal cortex. This network regulates how we experience and value rewards and punishments. In addition to its involvement in ADHD, this network has also been implicated in substance use disorders, for which ADHD persons are at high risk.
Figures (f)(g) and (h) complete the puzzle with additional regions implicated in ADHD whose role is less well understood. One role for these regions is in the regulation of the Default Mode Network, which controls what the brain does when it is not focused on any specific task (e.g., daydreaming, mind wandering).
People differ in the degree to which they shift between the default mode network and networks like Reward or Executive Control, which are active when we engage the world. Recent data suggest that the brains of ADHD people may be in 'default mode' when they ought to be engaged in the world.
Faraone,S. V. et al. (2015) Attention-deficit/hyperactivity disorder Nat. Rev. Dis.Primers doi:10.1038/nrdp.2015.20; http://rdcu.be/gYyV
Attention Deficit Hyperactivity Disorder (ADHD) is a common condition affecting children and adolescents worldwide, characterized by symptoms such as hyperactivity, impulsivity, and inattention. While traditional treatments like medication and behavioral therapy are often used, some individuals are turning to complementary and alternative therapies (CAM) for help. One such option gaining attention is acupuncture. But does it really work for ADHD?
A recent comprehensive study aimed to evaluate the effectiveness of acupuncture in treating ADHD symptoms. Here’s a breakdown of the findings, with a focus on the age groups included in the research and what these findings could mean for ADHD treatment options.
The study in question conducted a systematic review and meta-analysis (SR/MA) of acupuncture trials for ADHD, comparing its effects to traditional treatments such as pharmacotherapy and behavioral therapy. The researchers focused on acupuncture’s impact on core ADHD symptoms like hyperactivity, impulsivity, inattention, and conduct problems, while also exploring how acupuncture might help with other issues, such as learning difficulties and psychosomatic symptoms.
One key feature of this study was the inclusion of a broad age range of participants, specifically children and adolescents. These two groups are the most commonly diagnosed with ADHD, and their responses to treatments can vary significantly. Understanding how acupuncture works for these age groups is critical for evaluating its effectiveness as an ADHD treatment.
Here’s what the study found across the different age groups:
Despite these promising results, the study also highlighted several limitations:
In short, and as is so often the way of evidence-based medicine, we still can’t say with absolute certainty one way or the other. These studies may show promise in improving hyperactivity, impulsivity, inattention, and conduct problems– in both children and adolescents. However, the evidence is not yet strong enough to recommend it as a primary treatment. While it may serve as a helpful complement to standard therapies, especially for those struggling with medication side effects or access to behavioral therapy, more research is needed to establish its effectiveness.
This New York Times article, “5 Takeaways from New Research about ADHD”, earns a poor grade for accuracy. Let’s break down their (often misleading and frequently inaccurate) claims about ADHD.
The Claim: A.D.H.D. is hard to define/ No ADHD Biomarkers exist
The Reality: The claim that ADHD is hard to define “because scientists haven’t found a single biological marker” is misleading at best. While it is true that no biomarker exists, decades of rigorous research using structured clinical interviews and standardized rating scales show that ADHD is reliably diagnosed. Decades of validation research consistently show that ADHD is indeed a biologically-based disorder. One does not need a biomarker to draw that conclusion and recent research about ADHD has not changed that conclusion.
Additionally, research has in fact confirmed that genetics do play a role in the development of ADHD and several genes associated with ADHD have been identified.
The Claim: The efficacy of medication wanes over time
The Reality: The article’s statement that medications like Adderall or Ritalin only provide short-term benefits that fade over time is wrong. It relies almost entirely on one study—the Multimodal Treatment Study of ADHD (MTA). In the MTA study, the relative advantage of medication over behavioral treatments diminished after 36 months. This was largely because many patients who had not initially been given medication stopped taking it and many who had only been treated with behavior therapy suddenly began taking medication. The MTA shows that patients frequently switched treatments. It does not overturn other data documenting that these medications are highly effective. Moreover, many longitudinal studies clearly demonstrate sustained benefits of ADHD medications in reducing core symptoms, psychiatric comorbidity, substance abuse, and serious negative outcomes, including accidents, and school dropout rates. A study of nearly 150,000 people with ADHD in Sweden concluded “Among individuals diagnosed with ADHD, medication initiation was associated with significantly lower all-cause mortality, particularly for death due to unnatural causes”. The NY Times’ claim that medications lose their beneficial effects over time ignores compelling evidence to the contrary.
The Claim: Medications don’t help children with ADHD learn
The Reality: ADHD medications are proven to reliably improve attention, increase time spent on tasks, and reduce disruptive behavior, all critical factors directly linked to better academic performance.The article’s assertion that ADHD medications improve only classroom behavior and do not actually help students learn also oversimplifies and misunderstands the research evidence. While medication alone might not boost IQ or cognitive ability in a direct sense, extensive research confirms significant objective improvements in academic productivity and educational success—contrary to the claim made in the article that the medication’s effect is merely emotional or perceptual, rather than genuinely educational.
For example, a study of students with ADHD who were using medication intermittingly concluded “Individuals with ADHD had higher scores on the higher education entrance tests during periods they were taking ADHD medication vs non-medicated periods. These findings suggest that ADHD medications may help ameliorate educationally relevant outcomes in individuals with ADHD.”
The Claim: Changing a child’s environment can change his or her symptoms.
The Reality: The Times article asserts that ADHD symptoms are influenced by environmental fluctuations and thus might not have their roots in neurobiology. We have known for many years that the symptoms of ADHD fluctuate with environmental demands. The interpretation of this given by the NY Times is misleading because it confuses symptom variability with underlying causes. Many disorders with well-established biological origins are sensitive to environmental factors, yet their biology remains undisputed.
For example, hypertension is unquestionably a biologically based condition involving genetic and physiological factors. However, it is also well-known that environmental stressors, dietary
habits, and lifestyle factors can significantly worsen or improve hypertension. Similarly, asthma is biologically rooted in inflammation and airway hyper-reactivity, but environmental triggers such as allergens, pollution, or even emotional stress clearly impact symptom severity. Just as these environmental influences on hypertension or asthma do not negate their biological basis, the responsiveness of ADHD symptoms to environmental fluctuations (e.g., improvements in classroom structure, supportive home life) does not imply that ADHD lacks neurobiological roots. Rather, it underscores that ADHD, like many medical conditions, emerges from the interplay between underlying biological vulnerabilities and environmental influences.
Claim: There is no clear dividing line between those who have A.D.H.D. and those who don’t.
The Reality: This is absolutely and resoundingly false. The article’s suggestion that ADHD diagnosis is arbitrary because ADHD symptoms exist on a continuum rather than as a clear-cut, binary condition is misleading. Although it is true that ADHD symptoms—like inattention, hyperactivity, and impulsivity—do vary continuously across the population, the existence of this continuum does not make the diagnosis arbitrary or invalidate the disorder’s biological basis. Many well-established medical conditions show the same pattern. For instance, hypertension (high blood pressure) and hypercholesterolemia (high cholesterol) both involve measures that are continuously distributed. Blood pressure and cholesterol levels exist along a continuum, yet clear diagnostic thresholds have been carefully established through decades of clinical research. Their continuous distribution does not lead clinicians to question whether these conditions have biological origins or whether diagnosing an individual with hypertension or hypercholesterolemia is arbitrary. Rather, it underscores that clinical decisions and diagnostic thresholds are established using evidence about what levels lead to meaningful impairment or increased risk of negative health outcomes. Similarly, the diagnosis of ADHD has been meticulously defined and refined over many decades using extensive empirical research, structured clinical interviews, and validated rating scales. The diagnostic criteria developed by experts carefully delineate the point at which symptoms become severe enough to cause significant impairment in an individual’s daily functioning. Far from being arbitrary, these thresholds reflect robust scientific evidence that individuals meeting these criteria face increased risks for the serious impairments in life including accidents, suicide and premature death.
The existence of milder forms of ADHD does not undermine the validity of the diagnosis; rather, it emphasizes the clinical reality that people experience varying degrees of symptom severity.
Moreover, acknowledging variability in severity has always been a core principle in medicine. Clinicians routinely adjust treatments to meet individual patient needs. Not everyone diagnosed with hypertension receives identical medication regimens, nor does everyone with elevated cholesterol get prescribed the same intervention. Similarly, people with ADHD receive personalized treatment plans tailored to the severity of their symptoms, their specific impairments, and their individual circumstances. This personalization is not evidence of arbitrariness; it is precisely how evidence-based medicine is practiced. In sum, the continuous nature of ADHD symptoms is fully compatible with a biologically-based diagnosis that has substantial evidence for validity, and acknowledging symptom variability does not render diagnosis arbitrary or diminish its clinical importance.
In sum, readers seeking a balanced, evidence-based understanding of ADHD deserve clearer, more careful reporting. By overstating diagnostic uncertainty, selectively interpreting research about medication efficacy, and inaccurately portraying the educational benefits of medication, this article presents an overly simplistic, misleading picture of ADHD.
Recent research suggests that inflammation may play a role in ADHD. Inflammation, marked by elevated proteins and cytokines, affects brain development and structure. Evidence suggests it plays a role in the development of ADHD, making the study of inflammatory markers crucial.
The platelet-to-lymphocyte ratio (PLR) is a cost-effective test for predicting outcomes of chronic inflammation and neuroimmune diseases. Studies show PLR may be an important inflammatory marker in the pathophysiology of ADHD in children.
The Study:
A Chinese study team used the National Health and Nutrition Examination Survey (NHANES) database maintained by the National Center for Health Statistics of the United States to investigate the association between PLR and ADHD in children aged 6–14.
The team identified ADHD through prescriptions of ADHD medications.
After exclusions for missing information, the study encompassed 1,455 children.
The authors adjusted for the following potential confounders: sex, age, race, poverty-to-income ratio, maternal age at childbirth, smoking during pregnancy, asthma, health insurance status, dietary inflammatory index, monocyte count, segmented neutrophil count, eosinophil count, and basophil count.
They also split the PLR results into quartiles, with the first quartile having the lowest readings.
Prescriptions of ADHD medications were twice as frequent among children in the second quartile as they were among children in the first quartile. They were four times as frequent among children in the third quartile than among children in the first quartile.
Conclusion:
The team concluded, “These findings further support the potential role of inflammation in the onset and development of ADHD, providing preliminary evidence for PLR as a potential biomarker for ADHD and suggesting its possible use in identifying high-risk populations. However, considering the limitations of this study, future research should be designed as larger-scale, prospective, multi-center randomized controlled trials to validate these findings and further explore the relationship between inflammatory mechanisms and ADHD.”
In other words, this study suggests that while high PLR values may serve as a potential biomarker for ADHD, particularly in specific high-risk groups, further research is needed to confirm these findings and fully understand the role of inflammation in ADHD development. Larger, more robust studies will be crucial to validating PLR as a reliable tool for identifying at-risk populations.