April 7, 2021

Adult Onset ADHD: Does it Exist? Is it Distinct from Youth Onset ADHD?

There is a growing interest (and controversy) in 'adult-onset ADHD. No current diagnostic system allows for the diagnosis of ADHD in adulthood, yet clinicians sometimes face adults who meet all criteria for ADHD, except for age at onset. Although many of these clinically referred adult-onset cases may reflect poor recall, several recent longitudinal population studies have claimed to detect cases of adult-onset ADHD that showed no signs of ADHD as a youth (Agnew-Blais, Polanczyk et al. 2016, Caye, Rocha, et al. 2016). They conclude, not only that ADHD can onset in adulthood, but that childhood-onset and adult-onset ADHD may be distinct syndromes(Moffitt, Houts, et al. 2015)

In each study, the prevalence of adult-onset ADHD was much larger than the prevalence of childhood-onset adult ADHD). These estimates should be viewed with caution.  The adults in two of the studies were 18-19 years old.  That is too small a slice of adulthood to draw firm conclusions. As discussed elsewhere (Faraone and Biederman 2016), the claims for adult-onset ADHD are all based on population as opposed to clinical studies.
Population studies are plagued by the "false positive paradox", which states that, even when false positive rates are low, many or even most diagnoses in a population study can be false.  

Another problem is that the false positive rate is sensitive to the method of diagnosis. The child diagnoses in the studies claiming the existence of adult-onset ADHDused reports from parents and/or teachers but the adult diagnoses were based on self-report. Self-reports of ADHD in adults are less reliable than informant reports, which raises concerns about measurement error.   Another longitudinal study found that current symptoms of ADHD were under-reported by adults who had had ADHD in childhood and over-reported by adults who did not have ADHD in childhood(Sibley, Pelham, et al. 2012).   These issues strongly suggest that the studies claiming the existence of adult-onset ADHD underestimated the prevalence of persistent ADHD and overestimated the prevalence of adult-onset ADHD.  Thus, we cannot yet accept the conclusion that most adults referred to clinicians with ADHD symptoms will not have a history of ADHD in youth.

The new papers conclude that child and adult ADHD are "distinct syndromes", "that adult ADHD is more complex than a straightforward continuation of the childhood disorder" and that adult ADHD is "not a neurodevelopmental disorder". These conclusions are provocative, suggesting a paradigm shift in how we view adulthood and childhood ADHD.   Yet they seem premature.  In these studies, people were categorized as adult-onset ADHD if full-threshold add had not been diagnosed in childhood.  Yet, in all of these population studies, there was substantial evidence that the adult-onset cases were not neurotypical in adulthood (Faraone and Biederman 2016).  Notably, in a study of referred cases, one-third of late adolescent and adult-onset cases had childhood histories of ODD, CD, and school failure(Chandra, Biederman, et al. 2016).   Thus, many of the "adult onsets" of ADHD appear to have had neurodevelopmental roots. 

Looking through a more parsimonious lens, Faraone and Biederman(2016)proposed that the putative cases of adult-onset ADHD reflect the existence of subthreshold childhood ADHD that emerges with full threshold diagnostic criteria in adulthood.   Other work shows that subthreshold ADHD in childhood predicts onsets of full-threshold ADHD in adolescence(Lecendreux, Konofal, et al. 2015).   Why is onset delayed in subthreshold cases? One possibility is that intellectual and social supports help subthreshold ADHD youth compensate in early life, with decompensation occurring when supports are removed in adulthood or the challenges of life increase.  A related possibility is that the subthreshold cases are at the lower end of a dimensional liability spectrum that indexes risk for onset of ADHD symptoms and impairments.  This is consistent with the idea that ADHD is an extreme form of a dimensional trait, which is supported by twin and molecular genetic studies(Larsson, Anckarsater, et al. 2012, Lee, Ripke, et al. 2013).  These data suggest that disorders emerge when risk factors accumulate over time to exceed a threshold.  Those with lower levels of risk at birth will take longer to accumulate sufficient risk factors and longer to onset.

In conclusion, it is premature to accept the idea that there exists an adult-onset form of ADHD that does not have its roots in neurodevelopment and is not expressed in childhood.   It is, however, the right time to carefully study apparent cases of adult-onset ADHD to test the idea that they are late manifestations of a subthreshold childhood condition.

Agnew-Blais, J. C., G.V. Polanczyk, A. Danese, J. Wertz, T. E. Moffitt and L. Arseneault (2016)."Persistence, Remission and Emergence of ADHD in Young Adulthood:Resultsfrom a Longitudinal, Prospective Population-Based Cohort." JAMA.Caye, A., T. B.-M. Rocha, L. Luciana Anselmi, J. Murray, A. M.B. Menezes, F. C. Barros, H. Gonçalves, F. Wehrmeister, C. M. Jensen, H.-C.Steinhausen, J. M. Swanson, C. Kieling and L. A. Rohde (2016). "ADHD doesnot always begin in childhood: E 1 vidence from a large birth cohort." JAMA.
Chandra, S., J. Biederman and S. V. Faraone (2016)."Assessing the Validity of  the Ageat Onset Criterion for Diagnosing ADHD in DSM-5." J Atten Disord.
Faraone, S. V. and J. Biederman (2016). "CanAttention-Deficit/Hyperactivity Disorder Onset Occur in Adulthood?" JAMAPsychiatry.
Larsson, H., H. Anckarsater, M. Rastam, Z. Chang and P.Lichtenstein (2012). "Childhood attention-deficit hyperactivity disorderas an extreme of a continuous trait: a quantitative genetic study of 8,500 twinpairs." J Child Psychol Psychiatry53(1): 73-80.
Lecendreux, M., E. Konofal, S. Cortese and S. V. Faraone(2015). "A 4-year follow-up of attention-deficit/hyperactivity disorder ina population sample." J Clin Psychiatry76(6): 712-719.
Lee, S. H., S. Ripke, B. M. Neale, S. V. Faraone, S. M.Purcell, R. H. Perlis, B. J. Mowry, A. Thapar, M. E. Goddard, J. S. Witte, D.Absher, I. Agartz, H. Akil, F. Amin, O. A. Andreassen, A. Anjorin, R. Anney, V.Anttila, D. E. Arking, P. Asherson, M. H. Azevedo, L. Backlund, J. A. Badner,A. J. Bailey, T. Banaschewski, J. D. Barchas, M. R. Barnes, T. B. Barrett, N.Bass, A. Battaglia, M. Bauer, M. Bayes, F. Bellivier, S. E. Bergen, W.Berrettini, C. Betancur, T. Bettecken, J. Biederman, E. B. Binder, D. W. Black,D. H. Blackwood, C. S. Bloss, M. Boehnke, D. I. Boomsma, G. Breen, R. Breuer,R. Bruggeman, P. Cormican, N. G. Buccola, J. K. Buitelaar, W. E. Bunney, J. D.Buxbaum, W. F. Byerley, E. M. Byrne, S. Caesar, W. Cahn, R. M. Cantor, M.Casas, A. Chakravarti, K. Chambert, K. Choudhury, S. Cichon, C. R. Cloninger,D. A. Collier, E. H. Cook, H. Coon, B. Cormand, A. Corvin, W. H. Coryell, D. W.Craig, I. W. Craig, J. Crosbie, M. L. Cuccaro, D. Curtis, D. Czamara, S. Datta,G. Dawson, R. Day, E. J. De Geus, F. Degenhardt, S. Djurovic, G. J. Donohoe, A.E. Doyle, J. Duan, F. Dudbridge, E. Duketis, R. P. Ebstein, H. J. Edenberg, J.Elia, S. Ennis, B. Etain, A. Fanous, A. E. Farmer, I. N. Ferrier, M.Flickinger, E. Fombonne, T. Foroud, J. Frank, B. Franke, C. Fraser, R.Freedman, N. B. Freimer, C. M. Freitag, M. Friedl, L. Frisen, L. Gallagher, P.V. Gejman, L. Georgieva, E. S. Gershon, D. H. Geschwind, I. Giegling, M. Gill,S. D. Gordon, K. Gordon-Smith, E. K. Green, T. A. Greenwood, D. E. Grice, M.Gross, D. Grozeva, W. Guan, H. Gurling, L. De Haan, J. L. Haines, H. Hakonarson,J. Hallmayer, S. P. Hamilton, M. L. Hamshere, T. F. Hansen, A. M. Hartmann, M.Hautzinger, A. C. Heath, A. K. Henders, S. Herms, I. B. Hickie, M. Hipolito, S.Hoefels, P. A. Holmans, F. Holsboer, W. J. Hoogendijk, J. J. Hottenga, C. M.Hultman, V. Hus, A. Ingason, M. Ising, S. Jamain, E. G. Jones, I. Jones, L.Jones, J. Y. Tzeng, A. K. Kahler, R. S. Kahn, R. Kandaswamy, M. C. Keller, J.L. Kennedy, E. Kenny, L. Kent, Y. Kim, G. K. Kirov, S. M. Klauck, L. Klei, J.A. Knowles, M. A. Kohli, D. L. Koller, B. Konte, A. Korszun, L. Krabbendam, R.Krasucki, J. Kuntsi, P. Kwan, M. Landen, N. Langstrom, M. Lathrop, J. Lawrence,W. B. Lawson, M. Leboyer, D. H. Ledbetter, P. H. Lee, T. Lencz, K. P. Lesch, D.F. Levinson, C. M. Lewis, J. Li, P. Lichtenstein, J. A. Lieberman, D. Y. Lin,D. H. Linszen, C. Liu, F. W. Lohoff, S. K. Loo, C. Lord, J. K. Lowe, S. Lucae,D. J. MacIntyre, P. A. Madden, E. Maestrini, P. K. Magnusson, P. B. Mahon, W.Maier, A. K. Malhotra, S. M. Mane, C. L. Martin, N. G. Martin, M. Mattheisen,K. Matthews, M. Mattingsdal, S. A. McCarroll, K. A. McGhee, J. J. McGough, P.J. McGrath, P. McGuffin, M. G. McInnis, A. McIntosh, R. McKinney, A. W. McLean,F. J. McMahon, W. M. McMahon, A. McQuillin, H. Medeiros, S. E. Medland, S.Meier, I. Melle, F. Meng, J. Meyer, C. M. Middeldorp, L. Middleton, V.Milanova, A. Miranda, A. P. Monaco, G. W. Montgomery, J. L. Moran, D.Moreno-De-Luca, G. Morken, D. W. Morris, E. M. Morrow, V. Moskvina, P. Muglia,T. W. Muhleisen, W. J. Muir, B. Muller-Myhsok, M. Murtha, R. M. Myers, I.Myin-Germeys, M. C. Neale, S. F. Nelson, C. M. Nievergelt, I. Nikolov, V.Nimgaonkar, W. A. Nolen, M. M. Nothen, J. I. Nurnberger, E. A. Nwulia, D. R.Nyholt, C. O'Dushlaine, R. D. Oades, A. Olincy, G. Oliveira, L. Olsen, R. A.Ophoff, U. Osby, M. J. Owen, A. Palotie, J. R. Parr, A. D. Paterson, C. N.Pato, M. T. Pato, B. W. Penninx, M. L. Pergadia, M. A. Pericak-Vance, B. S.Pickard, J. Pimm, J. Piven, D. Posthuma, J. B. Potash, F. Poustka, P. Propping,V. Puri, D. J. Quested, E. M. Quinn, J. A. Ramos-Quiroga, H. B. Rasmussen, S.Raychaudhuri, K. Rehnstrom, A. Reif, M. Ribases, J. P. Rice, M. Rietschel, K.Roeder, H. Roeyers, L. Rossin, A. Rothenberger, G. Rouleau, D. Ruderfer, D.Rujescu, A. R. Sanders, S. J. Sanders, S. L. Santangelo, J. A. Sergeant, R.Schachar, M. Schalling, A. F. Schatzberg, W. A. Scheftner, G. D. Schellenberg,S. W. Scherer, N. J. Schork, T. G. Schulze, J. Schumacher, M. Schwarz, E.Scolnick, L. J. Scott, J. Shi, P. D. Shilling, S. I. Shyn, J. M. Silverman, S.L. Slager, S. L. Smalley, J. H. Smit, E. N. Smith, E. J. Sonuga-Barke, D. StClair, M. State, M. Steffens, H. C. Steinhausen, J. S. Strauss, J. Strohmaier,T. S. Stroup, J. S. Sutcliffe, P. Szatmari, S. Szelinger, S. Thirumalai, R. C.Thompson, A. A. Todorov, F. Tozzi, J. Treutlein, M. Uhr, E. J. van den Oord, G.Van Grootheest, J. Van Os, A. M. Vicente, V. J. Vieland, J. B. Vincent, P. M.Visscher, C. A. Walsh, T. H. Wassink, S. J. Watson, M. M. Weissman, T. Werge,T. F. Wienker, E. M. Wijsman, G. Willemsen, N. Williams, A. J. Willsey, S. H.Witt, W. Xu, A. H. Young, T. W. Yu, S. Zammit, P. P. Zandi, P. Zhang, F. G.Zitman, S. Zollner, B. Devlin, J. R. Kelsoe, P. Sklar, M. J. Daly, M. C.O'Donovan, N. Craddock, P. F. Sullivan, J. W. Smoller, K. S. Kendler and N. R.Wray (2013). "Genetic relationship between five psychiatric disordersestimated from genome-wide SNPs." Nat Genet45(9): 984-994.
Moffitt, T. E., R. Houts, P. Asherson, D. W. Belsky, D. L.Corcoran, M. Hammerle, H. Harrington, S. Hogan, M. H. Meier, G. V. Polanczyk,R. Poulton, S. Ramrakha, K. Sugden, B. Williams, L. A. Rohde and A. Caspi(2015). "Is Adult ADHD a Childhood-Onset Neurodevelopmental Disorder?Evidence From a Four-Decade Longitudinal Cohort Study." Am J Psychiatry:appiajp201514101266.
Sibley, M. H., W. E. Pelham, B.S. Molina, E. M. Gnagy, J. G. Waxmonsky, D. A. Waschbusch, K. J. Derefinko, B.T. Wymbs, A. C. Garefino, D. E. Babinski and A. B. Kuriyan (2012). "Whendiagnosing ADHD in young adults emphasize informant reports, DSM items, and impairment."J Consult Clin Psychol80(6):1052-1061.

Related posts

No items found.

Inflammation and Childhood ADHD: Platelet-to-Lymphocyte Ratios

Dose-response Association Found Between Platelet-to-Lymphocyte Ratio (PLR) and Childhood ADHD

Recent research suggests that inflammation may play a role in ADHD. Inflammation, marked by elevated proteins and cytokines, affects brain development and structure. Evidence suggests it plays a role in the development of ADHD, making the study of inflammatory markers crucial. 

The platelet-to-lymphocyte ratio (PLR) is a cost-effective test for predicting outcomes of chronic inflammation and neuroimmune diseases. Studies show PLR may be an important inflammatory marker in the pathophysiology of ADHD in children. 

The Study:

A Chinese study team used the National Health and Nutrition Examination Survey (NHANES) database maintained by the National Center for Health Statistics of the United States to investigate the association between PLR and ADHD in children aged 6–14. 

The team identified ADHD through prescriptions of ADHD medications. 

After exclusions for missing information, the study encompassed 1,455 children. 

The authors adjusted for the following potential confounders: sex, age, race, poverty-to-income ratio, maternal age at childbirth, smoking during pregnancy, asthma, health insurance status, dietary inflammatory index, monocyte count, segmented neutrophil count, eosinophil count, and basophil count. 

They also split the PLR results into quartiles, with the first quartile having the lowest readings. 

Prescriptions of ADHD medications were twice as frequent among children in the second quartile as they were among children in the first quartile. They were four times as frequent among children in the third quartile than among children in the first quartile.  

Conclusion

The team concluded, “These findings further support the potential role of inflammation in the onset and development of ADHD, providing preliminary evidence for PLR as a potential biomarker for ADHD and suggesting its possible use in identifying high-risk populations. However, considering the limitations of this study, future research should be designed as larger-scale, prospective, multi-center randomized controlled trials to validate these findings and further explore the relationship between inflammatory mechanisms and ADHD.” 

In other words, this study suggests that while high PLR values may serve as a potential biomarker for ADHD, particularly in specific high-risk groups, further research is needed to confirm these findings and fully understand the role of inflammation in ADHD development. Larger, more robust studies will be crucial to validating PLR as a reliable tool for identifying at-risk populations.

April 15, 2025

Meta-analysis of Two Nationwide Population Studies Finds No Harm to Offspring from Taking ADHD Medications During Pregnancy

ADHD is the most prevalent neurodevelopmental disorder. Nearly 1% of pregnant women in the Nordic countries and more than 1% in the United States are prescribed ADHD medications, ranking these among the most commonly used medications during pregnancy. However, the safety of exposing a fetus to ADHD medications is still uncertain, prompting many expectant mothers to stop using them out of fear for their unborn child’s well-being. 

The Study:

A European research team conducted a comprehensive nationwide study on the safety of ADHD medications during pregnancy using populations from Sweden and Denmark. The Swedish population was studied first, followed by inclusion of a separate study of the Danish population. Results were then combined through meta-analysis. Nordic countries, with their single-payer national health insurance systems and national population registers, facilitate the tracking of residents’ health from birth to death, thus providing robust data for such studies. 

The team accounted for various potential confounders, including maternal age, year of delivery, whether the mother was a first-time parent, self-reported smoking during pregnancy, and any psychiatric history. They also considered psychiatric inpatient or outpatient treatment received within two years before pregnancy, as well as the dispensing of other psychotropic medications during pregnancy, including antidepressants, antipsychotics, antiseizure medications, and anti-anxiety medications. Additionally, they examined the highest level of maternal education and civil status at delivery (married or cohabiting compared to single, divorced, or widowed). 

Out of 861,650 Swedish children, 2,257 were exposed to ADHD medications during pregnancy. Another 3,917 were born to mothers who discontinued ADHD medications before pregnancy.  

Children exposed to ADHD medications had lower rates of ADHD, autism spectrum disorder, and overall neurodevelopmental disorders; however, none of these differences were significant. 

Limiting the analysis to siblings to control for family environmental influences and genetics likewise found no significant differences.  

A meta-analysis combining the Swedish results with a separately conducted nationwide population study in neighboring Denmark similarly found no significant differences between children exposed to ADHD medications during pregnancy and children born to mothers who discontinued ADHD medications before pregnancy. 

Conclusion:

The team concluded, “Overall, our study provides reassuring evidence that continuing ADHD medication during pregnancy does not increase the risk of long-term NDDs [neurodevelopmental disorders] in offspring." 

From Meds to Mindfulness: What Actually Works for Adult ADHD?

A new large-scale study has shed light on which treatments for attention-deficit/hyperactivity disorder (ADHD) in adults are most effective and best tolerated. 

Researchers analyzed 113 randomized controlled trials involving nearly 15,000 adults diagnosed with ADHD. These studies included medications (like stimulants and atomoxetine), psychological therapies (such as cognitive behavioral therapy), and newer approaches like neurostimulation.

The Findings

Stimulant medications (lisdexamfetamine and methylphenidate) as well as selective norepinephrine reuptake inhibitors (SNRI) (atomoxetine) were the only treatments that consistently reduced core ADHD symptoms—both from the perspective of patients and clinicians. It may be worth noting that atomoxetine, while effective, was less well tolerated, with more people dropping out due to side effects.

Psychological therapies such as CBT, mindfulness, and psychoeducation showed some benefits, but mainly according to clinician ratings—not necessarily from the patients themselves. Neurostimulation techniques like transcranial direct current stimulation also showed some improvements, but only in limited contexts and with small sample sizes. Interestingly, none of the treatments—medication or otherwise—made a clear impact on long-term quality of life or emotional regulation. 

Conclusion 

So, what does this mean for people navigating ADHD in adulthood? Stimulant medications remain the most effective treatment for managing ADHD symptoms day-to-day but nonstimulant medication are not far behind, which is good given the problems we’ve had with stimulant shortages. This study also supports structured psychotherapy as a viable treatment option, especially when used in conjunction with medication. 

The study emphasizes the importance of ongoing, long-term research and the need for treatment plans that are tailored to the individual ADHD patient– Managing adult ADHD effectively calls for flexible, patient-centered care.

------

Struggling with side effects or not seeing improvement in your day-to-day life? Dive into a step-by-step journey that starts with the basics of screening and diagnosis, detailing the clinical criteria healthcare professionals use so you can be certain you receive an accurate evaluation. This isn’t just another ADHD guide—it’s your toolkit for getting the care you deserve. This is the kind of care that doesn’t just patch up symptoms but helps you unlock your potential and build the life you want. Whether you’ve just been diagnosed or you’ve been living with ADHD for years, this booklet is here to empower you to take control of your healthcare journey.

Proceeds from the sale of this book are used to support www.ADHDevidence.org.

Get the guide now– Navigating ADHD Care: A Practical Guide for Adults
April 9, 2025