July 16, 2021

What do we know about the relationship between omega-3 PUFAs and ADHD?

There has been much interest in omega-3 Polyunsaturated fatty acids (PUFAs) as treatments for ADHD. Humans are unable to synthesize the omega-3 PUFA alpha-linolenic acid (ALA)and the omega-6 PUFA linoleic acid (LA), and must therefore obtain these through food, which is why they are known as essential fatty acids.  Because cells in the brain need omega-3 PUFAs, they have been studied as a treatment for ADHD by many researchers.  Several meta-analyses are available.

A 2014 meta-analysis by Elizabeth Haw key and Joel Niggcombined nine studies involving 586 participants. It found mean blood levels of omega-3 PUFAs in persons with ADHD to be lower than in controls. The standardized mean difference (SMD) effect size was medium (SMD = .42, 95% CI = .26-.59), with less than a one in one thousand probability of such a result being obtained by chance alone. Adjusting for publication bias reduced the effect size slightly to .36 with a 95% CI of .21-.51, in the small-to-medium range. The authors then examined whether omega-3 supplementation could help alleviate ADHD symptoms. Combining 16 studies with 1,408 participants, they found improvements, but this time with a small effect size (SMD = .26, 95% CI =.15-.37), again with less than a one in a thousand probability of such a result being observed by chance. Adjusting for publication bias reduced the effect size to .16 with a 95% CI of .03-.28.  For comparison, the SMD for stimulants is about 0.9.

Another meta-analysis conducted in the same year by BasantPuri and Julian Martins combined 18 PUFA supplementation studies involving1,640 participants. They also found a small effect size for reduced ADHD symptoms (SMD = .19, 95% CI = .09-.30, p<.001). Adjusting for publication bias further reduced the effect size to a paltry and statistically insignificant level (SMD = .12, 95% CI = -.01-.25). It should be noted that while16 of the studies involved omega-3 supplementation, two involved only omega-6supplementation. Yet the results for the latter did not differ noticeably from the former. When the authors limited the analysis to the 11 studies specifically including both the omega-6GLAand the omega-3 EPA, the effect size for reducing inattention symptoms was a bit higher(SMD = .31, 95% CI = .16-.46, p<.0001). But the results were not significantly different from those for the studies without the GLA+ALA combination (.012; 95% CI: .161-.137; p=.875). Publication bias was not addressed, and the hunt for a highly specific subset with positive results may have produced a false-positive finding.  The authors conceded, "Weaknesses of this study include the following: although the pooled effect was statistically significant, only two studies showed a significant effect by themselves; the funnel plot showed evidence of publication bias; there was evidence of reporting bias; few studies were formally registered; study methodological quality was variable, and the placebo used across studies varied."

A 2016 meta-analysis by Laura Lachance et al. tried looking for differences in the ratio of omega-6 to omega-3 PUFAs, and more specifically, AA to EPA, in the blood of persons with ADHD versus normally developing persons. Pooling five studies with485 participants, it found the omega-6 to omega-3 ratio to be significantly higher in persons with ADHD, and pooling three studies with 279 participants, it likewise found the AA to EPA ratio significantly higher.

A 2017 meta-analysis by Jane Pei-Chen Chang et al. Reexamined comparative levels of omega-3 PUFAs in ADHD patients versus normally developing controls. Combining six studies with 396 participants, ADHD patients had lower levels in blood and mouth tissue, with a medium effect size (SMD =.38) that was not statistically significant (p=.14).  Omega-6 levels were indistinguishable (SMD =.03) in the two groups. AA (SMD = .18, p=.33) and EPA (SMD = .25, p=.17) levels were slightly lower, but once again statistically not significant. DHA levels were lower as well, this time with a medium effect size (SMD = .56), but at the outer margin of significance (p=.05). Only by dropping one study were the authors able to claim significance for EPA, AA, and omega-3 differences.

Chang et al. also performed a meta-analysis of supplementation studies. Combining seven studies with 534 participants, they found a small to medium reduction in ADHD symptoms with omega-3 supplementation(SMD = .38, 95% CI = .2-.56, p<.0001). Corrections for publication bias were not reported. The authors also reported large reductions in both omission errors (SMD = 1.09, 95% CI = .43-.1.75, p<.001) and commission errors (SMD =2.14, 95% CI = 1.24-3.03, p<.00001) on a neuropsychological test of attention. But the former involved only 3 studies with 214 participants, and the latter only two studies with 85 participants.

Also in 2017, Pelsser et al. published a systematic review that identified only two meta-analyses of double-blind, placebo-controlled trials of PUFA supplementation. One of those, a 2012meta-analysis by Gillies et al., found no statistically significant declines in either parent-rated ADHD symptoms (five trials, 413 participants, SMD = -.17,95% CI = -.38-.03) or teacher-rated ADHD symptoms (four trials, 324participants, SMD = .05, 95% CI = -.18-.27). The other, a 2013 meta-analysis by Sonuga-Barke et al., found only a slight and barely statistically significant reduction in symptoms (11 trials, 827 participants, SMD = .16, 95% CI =.01-.31). Pelsser et al. concluded, "Considering the small average ESs [effect sizes] PUFA supplementation is unlikely to provide a tangible contribution to ADHD treatment."

Putting all of this together, there are indications that individuals with ADHD may have lower levels of omega-3 PUFAs, and that omega-3 supplementation may slightly reduce symptoms of ADHD, but the evidence remains inconclusive, with at best small effect sizes. It is possible, but not yet demonstrated, that omega-3 PUFAs might produce good outcomes in a small subset of patients.

Jane Pei-Chen Chang, Kuan-Pin Su, Valeria Mondelli, and carmine M Pariante, "Omega-3 Polyunsaturated Fatty Acids in Youths with Attention Deficit Hyperactivity Disorder: a Systematic Review and Meta-Analysis of Clinical Trials and Biological Studies," Neuropsychopharmacology (2017),43(3): 534-545.
Donna Gillies, John KH Sinn, Sagar S Lad, Matthew J Leach, MelissaJ Ross, "Polyunsaturated fatty acids (PUFA) for attention deficit hyperactivity disorder (ADHD) in children and adolescents," Cochrane Database of Systematic Reviews (2012), DOI:10.1002/14651858.CD007986.pub2.
Elizabeth Hawkey and Joel T. Negg, "Omega-3 fatty acid and ADHD: Blood level analysis and meta-analytic extension of supplementation trials," Clinical Psychology Review(2014), 34(6), 496-505.
Laura LaChance, Kwame McKenzie, Valerie H. Taylor, and Simone N. Vigod, "Omega-6 to Omega-3 Fatty Acid Ratio in Patients with ADHD: AMeta-Analysis," Journal of the Canadian Academy of Child and AdolescentPsychiatry (2016), 25(2), 87-96.
Lidy M. Pelsser, Klaas Frankena, Jan Toorman, Rob Rodrigues Pereira, "Diet and ADHD, Reviewing the Evidence: A Systematic Review of meta-Analyses of Double-Blind Placebo-Controlled Trials Evaluating the Efficacy of Diet Interventions on the Behavior of Children with ADHD," PLOS ONE (January 25, 2017), 1-25.
Basant K. Puri and Julian G. Martins, "Which polyunsaturated fatty acids are active in children with attention-deficit hyperactivity disorder receiving PUFA supplementation? A fatty acid validated meta-regression analysis of randomized controlled trials," Prostaglandins, Leukotrienes and Essential Fatty Acids (2014), 90, 179-189.
Edmund J.S. Sonuga-Barke et al., "NonpharmacologicalInterventions for ADHD: Systematic Review and Meta-Analyses of RandomizedControlled Trials of Dietary and Psychological Treatments," American Journal of Psychiatry (2013),170:275-289.

Related posts

No items found.

Patterns of Child and Adolescent Psychiatric Admissions During COVID-19: Key Insights from Clinical Data

A recent study from Istanbul sheds light on how psychiatric admissions and diagnoses changed during the first few months of the pandemic compared to previous periods, offering critical insights for parents, clinicians, and policymakers. 

This study, conducted by a team of researchers led by Ozalp Ekinci, examined psychiatric admissions among children and adolescents during 2019 and 2020. 

By looking at diagnosis rates for various psychiatric conditions, the researchers aimed to pinpoint shifts in the mental health landscape as a direct response to the pandemic.

Findings: A Closer Look at Diagnosis Patterns

The analysis revealed several notable trends in psychiatric diagnoses among children and adolescents:

  1. Autism Spectrum Disorder (ASD): ASD diagnoses were notably higher in the early pandemic phase (6.4% in Group A) compared to the same period in the previous year (3.6%). This increase could reflect heightened stress or changes in routines that may have exacerbated underlying symptoms, leading to more frequent clinical presentations.
  2. Obsessive-Compulsive Disorder (OCD) and Tic Disorders: OCD and tic disorder diagnoses also saw a rise, increasing from 1.7% in 2019 to 2.9% during the pandemic’s onset. It’s possible that pandemic-driven anxieties and hygiene concerns, as well as disruptions to typical routines, may have worsened symptoms in those predisposed to OCD and similar disorders.
  3. Intellectual Disability (ID): Diagnoses for ID rose from 2.1% (Group C) to 3.7% (Group A). This increase highlights the challenges faced by children with developmental and intellectual disabilities, who may have experienced heightened difficulty adapting to the many changes imposed by the pandemic.
  4. Attention-Deficit Hyperactivity Disorder (ADHD): ADHD diagnoses were significantly higher in the pandemic phase (59.8% for Group A vs. 49.7% for Group B). With altered school structures, remote learning, and restricted socialization, ADHD symptoms could have been amplified, making it harder for children to concentrate and adhere to routines.
  5. Depression: Depression diagnoses also saw a rise (4.1% in Group A vs. 2.2% in Group C). Isolation, disruption of daily activities, and reduced social interactions likely contributed to increased depressive symptoms, particularly in adolescents who rely heavily on peer support.
  6. Conduct Disorder (CD): Interestingly, CD diagnoses were lower during the pandemic phase compared to pre-pandemic levels (3.6% in Group A vs. 6.4% in Group B). The reduction in face-to-face interactions and less exposure to traditional school settings may have lessened some of the typical triggers associated with conduct-related issues.
Implications

This study’s findings highlight some key takeaways that can guide mental health support efforts for children and adolescents:

  1. Increased Need for Early Support in Neurodevelopmental Disorders: The rise in ASD and ADHD diagnoses points to the need for specialized support in times of crisis, particularly for children who depend on routine and structure. Families and educators should work to create consistent environments that help manage symptoms.
  2. Addressing Pandemic-Induced Anxiety: With heightened cases of OCD and tic disorders, it’s clear that the pandemic’s emphasis on cleanliness and health may have intensified anxiety-driven behaviors. Future mental health responses should include strategies to manage health-related fears and equip children with coping skills.
  3. Supporting Emotional Resilience in Adolescents: Depression was notably higher among young people during the pandemic onset, suggesting a critical need for access to counseling and peer support, especially in times of isolation. Developing robust virtual mental health resources and promoting mental well-being in schools can help support children and adolescents both in and out of school.
  4. Recognizing the Complexity of Behavioral Changes: The drop in conduct disorder diagnoses during the pandemic suggests a link between behavioral disorders and social settings. Understanding these dynamics could lead to more tailored interventions that account for environmental factors impacting behavior.
Conclusion: 

As we continue to see the effects of the COVID-19 pandemic on mental health, studies like this one serve as important reminders of the unique mental health needs of young people. Supporting children and adolescents through proactive and targeted mental health services—especially during times of crisis—will be crucial to fostering resilience and well-being in future generations.

November 19, 2024

New Global Estimate of Adult ADHD Prevalence: A Comprehensive Review

Adult ADHD has long been a subject of debate in the field of mental health, with previous estimates of its prevalence varying widely. To achieve a more precise understanding, an international team of researchers conducted a new umbrella review and meta-analysis, offering an updated estimate of adult ADHD rates worldwide.

A Comprehensive Approach: Reviewing 57 Studies

This large-scale analysis combined five systematic reviews and meta-analyses, incorporating data from 57 unique primary studies. Altogether, the research synthesized findings from a pooled total of over 21 million participants. This comprehensive approach provided a more accurate estimate of the global prevalence of ADHD in adults.

Key Findings: 3.1% Global Prevalence

The study concluded that the worldwide prevalence of adult ADHD is 3.1%, with a 95% confidence interval ranging from 2.6% to 3.6%. This estimate falls within the range of earlier reports but provides a more targeted understanding of the rate at which ADHD affects adults globally.

Putting the Numbers in Context

The researchers described this prevalence rate as “relatively high.” They noted that it is only slightly lower than the estimated prevalence of major mental health conditions like schizophrenia (4%) and major depressive disorder (5%)—disorders that have historically received significant attention and resources worldwide.

Moreover, the prevalence of adult ADHD is higher than that of several other well-known mental health conditions, including bipolar disorder (1%), as well as anxiety disorders such as PTSD (Post-Traumatic Stress Disorder), OCD (Obsessive-Compulsive Disorder), GAD (Generalized Anxiety Disorder), and panic disorders.

Implications for Awareness and Treatment

This updated estimate emphasizes that ADHD is a significant global mental health concern in adults, comparable to or exceeding the prevalence of other disorders that are often more widely recognized. These findings underscore the need for greater awareness, research, and treatment options for adult ADHD, which is still frequently misunderstood or overlooked in the broader discourse of mental health.

Conclusion

By providing a clearer picture of how prevalent ADHD is in adult populations around the world, this study contributes valuable data that could shape future research, policy, and clinical approaches.

November 8, 2024

Updated Analysis of ADHD Prevalence in the United States: 2018-2021

Attention-Deficit/Hyperactivity Disorder (ADHD) remains a prevalent condition among children and adolescents in the United States. A recent analysis based on the National Health Interview Survey (NHIS), conducted by the National Center for Health Statistics at the CDC, provides an updated look at ADHD prevalence from 2018 to 2021. Here’s a closer look at what the data reveals.

How the Survey Works

The NHIS is an annual survey primarily conducted through face-to-face interviews in respondents’ homes. Telephone interviews are used as a substitute in cases where travel is impractical. For each family interviewed, one child aged 3-17 is randomly selected for the survey through a computer program. Over the four years studied (2018-2021), a total of 26,422 households with children or adolescents participated.

Overall ADHD Prevalence and Age-Related Trends

The analysis found that 9.5% of children and adolescents in the United States had been diagnosed with ADHD, based on reports from family members. However, the prevalence varied significantly with age:

  • Ages 3-5: 1.5%
  • Ages 6-11: 9.6%
  • Ages 12-17: 13.4%

The increase in ADHD diagnosis with age underscores the importance of monitoring children’s developmental needs as they progress through school and adolescence.

Gender Differences: Higher Rates Among Males

The survey revealed a notable difference in ADHD prevalence between genders, with 12.4% of males diagnosed compared to 6.6% of females—nearly a two-to-one gap. This aligns with previous research indicating that ADHD is more frequently diagnosed in boys than girls, though awareness of how ADHD presents differently across genders is growing.

Family Income and ADHD Rates

Family income played a significant role in ADHD prevalence, particularly among lower-income groups:

  • Below the poverty line: 12.7%
  • Above the poverty line but less than twice that level: 10.3%
  • Above twice the poverty level: 8.5%

This pattern suggests that socioeconomic factors might influence the diagnosis and management of ADHD, with lower-income families possibly experiencing greater barriers to early diagnosis or consistent treatment.

Regional Differences Across the U.S.

Geographic location also impacted ADHD rates. Prevalence was highest in the South (11.3%), followed by the Midwest (10%), the Northeast (9.1%), and significantly lower in the West (6.9%). These variations could reflect regional differences in healthcare access, diagnostic practices, or cultural attitudes towards ADHD.

Stability Over Time

Despite these variations in demographics, the overall prevalence of ADHD remained relatively stable across the study period from 2018 to 2021, showing no significant changes by year.

What This Means for Families and Healthcare Providers

The findings from this updated analysis provide a clearer picture of ADHD’s prevalence across different demographic groups in the United States. They highlight the need for tailored approaches to diagnosis and care, taking into account factors like age, gender, income, and geographic location. With ADHD being a common condition affecting nearly 1 in 10 children, ongoing research and support for families are crucial to ensure that those with ADHD receive the care and resources they need.

Conclusion: 

This study reinforces the importance of awareness and early intervention, especially for families in underserved regions or those facing economic challenges. As clinicians and educators continue to support children with ADHD, understanding these demographic trends can help in creating more equitable access to diagnosis and treatment.

October 29, 2024