Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
X
March 17, 2025

Background:
Noting that “the results of previous investigations into the therapeutic benefits of probiotics in the treatment of ADHD symptoms remain inconsistent,” a Taiwanese study team conducted a systematic search of the peer-reviewed medical literature to perform a meta-analysis.
The Study:
The team identified seven randomized controlled trials (RCTs) that met criteria for inclusion: focusing on children and adolescents under 18, with ADHD diagnoses, comparing probiotic interventions with placebo, and using standardized behavioral rating scales to assess ADHD symptoms.
Meta-analysis of these seven RCTs with a combined total of 342 participants found no significant improvement in ADHD symptoms. In fact, six of the seven RCTs clustered tightly around zero effect, while the seventh – a small sample (38) outlier – reported a very large effect size improvement.
Meta-analysis of the three RCTs with a combined 154 individuals that used probiotics with single strains of microorganisms showed absolutely no improvement in ADHD symptoms with no between-study variation (heterogeneity).
Meta-analysis of the four RCTs with a total of 188 participants that used multiple strains pointed to a medium – but statistically nonsignificant – effect size improvement, with high heterogeneity. Removing the previously mentioned outlier RCT collapsed the effect size to zero.
Two of the RCTs (with 72 total individuals), including the outlier, offered probiotics in conjunction with methylphenidate treatment. Meta-analysis of the other five RCTs with 270 persons that were structured around pure supplementation yielded absolutely no improvement in ADHD symptoms with no heterogeneity.
Meta-analyses of the four RCTs with a combined total of 238 participants that examined ADHD subtypes reported no effect on either inattention symptoms or hyperactivity/impulsivity symptoms.
Trivially, given the lack of efficacy, probiotic regimens were tolerated as well as placebo.
The Take-Away:
Ultimately, this meta-analysis found no evidence that probiotics improve ADHD symptoms in children and adolescents. Across seven randomized controlled trials, results consistently showed no significant benefit compared to a placebo. While probiotics were well-tolerated, they did not meaningfully impact inattention, hyperactivity, or impulsivity. These findings suggest that probiotics, whether single or multi-strain, are not an effective treatment for ADHD.
Shun-Chin Liang, Cheuk-Kwan Sun, Chih-Hua Chang, Yu-Shian Cheng, Ruu-Fen Tzang, Hsien-Jane Chiu, Ming Yu Wang, Ying-Chih Cheng, and Kuo-Chuan Hung, “Therapeutic efficacy of probiotics for symptoms of attention-deficit hyperactivity disorder in children and adolescents: meta-analysis,” BJPsych Open (2024) 10, e36, 1–8, https://doi.org/10.1192/bjo.2023.645.
Folic acid, also known as folate, is an essential vitamin(B-9). Inadequate dietary folate has been associated with abnormal fetal brain development. That suggests a deficiency could contribute to neurodevelopmental disorders, including ADHD.
If so, could folic acid supplementation for pregnant mothers help avoid ADHD in offspring?
A Chinese study team conducted a systematic search of the peer-reviewed medical journal literature looking for studies exploring neurodevelopmental effects associated with such supplementation.
It identified six studies that specifically looked for associations with offspring ADHD. A meta-analysis of these studies encompassing a total of 29,634 participants found a 14% (one in seven) reduction in the odds of ADHD in the offspring of mothers taking folate supplementation as opposed to children of mothers not doing so.
There was no sign of either publication bias or between-study heterogeneity.
The authors concluded, "Our meta-analysis indicated that appropriate maternal FA supplementation may have positive effects on offspring's neurodevelopmental outcomes, including improved intellectual development and reduced risk of autism traits, ADHD, behavioral, and language problems."
Given that folate is an essential vitamin in the first place, this suggests ensuring that pregnant women supplement their diet with folic acid. The authors further counseled, "However, further high-quality studies on this topic are needed to confirm the optimal dosage and the right time of FA supplementation and to investigate the underlying mechanisms."
Stimulant medications like methylphenidate and amphetamines are well-established treatments for reducing ADHD symptoms, making a notable difference in focus and behavior. Given that caffeine is also a stimulant, researchers have wondered whether it might offer similar benefits for managing ADHD symptoms. A recent meta-analysis conducted by a Brazilian research team sought to explore this question.
The researchers faced an immediate challenge: there is surprisingly little research directly investigating caffeine's effects on ADHD symptoms. After a thorough review of peer-reviewed literature, they identified only four randomized controlled trials (RCTs) suitable for their analysis, encompassing a combined total of just 152 participants.
The limited number of studies—and participants—meant that the meta-analysis was not as robust as the research team might have hoped. However, they proceeded to examine the available data to determine whether caffeine showed any measurable benefit over a placebo.
The results of the meta-analysis showed a slight decrease in ADHD symptoms among those who consumed caffeine compared to those given a placebo. However, this reduction was not statistically significant. The small sample size likely played a role in this outcome, making the study underpowered. Even if future studies with larger groups of participants were to show statistical significance, the observed effect size would likely remain too small to be clinically meaningful.
Interestingly, the four trials included in the meta-analysis showed very little variation in their findings. Each study slightly favored caffeine over placebo, but none came close to achieving statistical significance.
Ultimately, the researchers concluded that “overall, the totality of the evidence suggests no significant benefit of caffeine over placebo in the treatment of children with ADHD.” The findings indicate that while caffeine might produce a slight reduction in symptoms, it is not an effective alternative to established ADHD treatments like methylphenidate or amphetamines.
This study highlights the importance of relying on proven medications for ADHD management rather than seeking alternatives that lack substantial evidence. While caffeine might offer a slight stimulant effect, it falls short of delivering the therapeutic benefits needed for those with ADHD to manage their symptoms effectively. For clinicians, parents, and individuals with ADHD, these results underscore the value of evidence-based treatments in improving quality of life and daily functioning.
Noting that “Oxidative stress disrupts the structure and function of neurons in the prefrontal lobe of the brain,” and “Structural and functional impairments in the prefrontal cortex have been shown to be highly correlated with behavioral and emotional problems of ADHD,” a Chinese team at Dalian University set out to systematically evaluate the safety and efficacy of antioxidant therapy in children and adolescents with ADHD.
The team’s systematic search of the peer-reviewed medical literature identified a total of 48 randomized controlled trials (RCTs) or prospective studies involving 12 antioxidant agents (resveratrol, pycnogenol, omega-3, omega-6, quercetin, phosphatidylserine, almond, vitamin D, zinc, folic acid, ginkgo biloba, Acetyl-L-carnitine) that met criteria for inclusion:
Treatment efficacy was measured through ADHD symptom scores using Conners’ parent rating scale (CPRS), Conners’ teacher rating scale (CTRS), ADHD rating scale-parent (ADHD RS-Parent), and ADHD rating scale-teacher (ADHD RS-Teacher), as well as secondary outcome indicators such as the Clinical Global Impressions scale (CGI) and Continuous Performance Test (CPT), relative to controls.
None of the antioxidant therapies were significantly better than placebo.
One limitation is that no effort was made to assess publication bias.
These results indicate that antioxidants should not be used for treating ADHD.
Background:
Sleep is more than simple rest. When discussing sleep, we tend to focus on the quantity rather than the quality, how many hours of sleep we get versus the quality or depth of sleep. Duration is an important part of the picture, but understanding the stages of sleep and how certain mental health disorders affect those stages is a crucial part of the discussion.
Sleep is an active mental process where the brain goes through distinct phases of complex electrical rhythms. These phases can be broken down into non-rapid eye movement (NREM) and rapid eye movement (REM). The non-rapid eye movement phase consists of three stages of the four stages of sleep, referred to as N1, N2(light sleep), and N3(deep sleep). N4 is the REM phase, during which time vivid dreaming typically occurs.
Two of the most important measurable brain rhythms occur during non-rapid eye movement (NREM) sleep. These electrical rhythms are referred to as slow waves and sleep spindles. Slow waves reflect deep, restorative sleep, while spindles are brief bursts of brain activity that support memory and learning.
The Study:
A new research review has compiled data on how these sleep oscillations differ across psychiatric conditions. The findings suggest that subtle changes in nightly brain rhythms may hold important clues about a range of disorders, from ADHD to schizophrenia.
The Results:
People with ADHD showed increased slow-spindle activity, meaning those brief bursts of NREM activity were more frequent or stronger than in people without ADHD. Why this happens isn’t fully understood, but it may reflect differences in how the ADHD brain organizes information during sleep. Evidence for slow-wave abnormalities was mixed, suggesting that deep sleep disruption is not a consistent hallmark of ADHD.
Among individuals with autism spectrum disorder (ASD), results were less consistent. However, some studies pointed to lower “spindle chirp” (the subtle shift in spindle frequency over time) and reduced slow-wave amplitude. Lower amplitude suggests that the brain’s deep-sleep signals may be weaker or less synchronized. Researchers are still working to understand how these patterns relate to sensory processing, learning differences, or daytime behavior.
People with depression tended to show reduced slow-wave activity and fewer or weaker sleep spindles, but this pattern appeared most strongly in patients taking antidepressant medications. Since antidepressants can influence sleep architecture, researchers are careful not to overinterpret the changes. Nevertheless, these changes raise interesting questions about how both depression and its treatments shape the sleeping brain.
In post-traumatic stress disorder (PTSD), the trend moved in the opposite direction. Patients showed higher spindle frequency and activity, and these changes were linked to symptom severity which suggests that the brain may be “overactive” during sleep in ways that relate to hyperarousal or intrusive memories. This strengthens the idea that sleep physiology plays a role in how traumatic memories are processed.
The clearest and most reliable findings emerged in psychotic disorders, including schizophrenia. Across multiple studies, individuals showed: Lower spindle density (fewer spindles overall), reduced spindle amplitude and duration, correlations with symptom severity, and cognitive deficits.
Lower slow-wave activity also appeared, especially in the early phases of illness. These results echo earlier research suggesting that sleep spindles, which are generated by thalamocortical circuits, might offer a window into the neural disruptions that underlie psychosis.
The Take-Away:
The review concludes with a key message: While sleep disturbances are clearly present across psychiatric conditions, the field needs larger, better-standardized, and more longitudinal studies. With more consistent methods and longer follow-ups, researchers may be able to determine whether these oscillations can serve as reliable biomarkers or future treatment targets.
For now, the take-home message is that the effects of these mental health disorders on sleep are real and measurable.
Many studies have shown that ADHD is associated with increased risks of suicidal behavior, substance misuse, injuries, and criminality. As we often discuss in our blogs, treatments for ADHD include medication and non-medication options, such as CBT (Cognitive Behavioral Therapy). While non-drug approaches are often used for young children or mild cases of ADHD, medications – both stimulants and non-stimulants – are common for adolescents and adults.
Global prescriptions for ADHD drugs have risen significantly in recent years, raising questions about their safety and effectiveness. Randomized controlled trials have demonstrated that medication can help reduce the core symptoms of ADHD. However, research from these trials still offers limited or inconclusive insights into wider and more significant clinical outcomes, such as suicidal behavior and substance use disorder.
An international study team conducted a nationwide population study using the Swedish national registers. Sweden has a single-payer national health insurance system, which covers nearly every resident, enabling such studies. The researchers examined all Swedish residents aged 6 to 64 who received their first ADHD diagnosis between 2007 and 2018. Analyses of criminal behavior and transport accidents focused on a subgroup aged 15 to 64, since individuals in Sweden must be at least 15 years old to be legally accountable for crimes or to drive.
The team controlled for confounding factors, including demographics (age at ADHD diagnosis, calendar year, sex, country of birth, highest education (using parental education for those under 25), psychiatric and physical diagnoses, dispensations of psychotropic drugs, and health care use (outpatient visits and hospital admissions for both psychiatric and non-psychiatric reasons).
Time-varying covariates from the previous month covered diagnoses, medication dispensations, and healthcare use. During the study, ADHD treatments licensed in Sweden included amphetamine, atomoxetine, dexamphetamine, guanfacine, lisdexamphetamine, and methylphenidate.
After accounting for covariates, individuals diagnosed with ADHD who received medication treatment showed better outcomes than those who did not. Specifically:
-Suicidal behaviors dropped by roughly 15% in both first-time and recurrent cases.
-Initial criminal activity decreased by 13%, with repeated offences falling by 25%.
-Substance abuse initiation declined by 15%, while recurring substance abuse was reduced
by 25%.
-First automotive crashes were down 12%, and subsequent crashes fell by 16%.
There was no notable reduction in first-time accidental injuries, and only a marginally significant 4% decrease in repeated injuries.
The team concluded, “Drug treatment for ADHD was associated with beneficial effects in reducing the risks of suicidal behaviours, substance misuse, transport accidents, and criminality, but not accidental injuries when considering first event rate. The risk reductions were more pronounced for recurrent events, with reduced rates for all five outcomes.”
Background:
Pharmacotherapies, such as methylphenidate, are highly effective for short-term ADHD management, but issues remain with medication tolerability and adherence. Some patients experience unwanted side effects from stimulant medications, leaving them searching for alternative ADHD treatments. Alternative treatments such as cognitive training, behavioral therapies, psychological interventions, neurofeedback, and dietary changes have, so far, shown limited success. Thus, there is a critical need for non-pharmacological options that boost neurocognitive performance and address core ADHD symptoms.
First— What Are NIBS (Non-Invasive Brain Stimulation) Techniques?
Non-invasive brain stimulation (NIBS) techniques, including transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS), transcranial alternating current stimulation (tACS), and repetitive transcranial magnetic stimulation (rTMS) are generating growing attention within the scientific community.
NIBS techniques are methods that use external stimulation, such as magnets or electrical currents, to affect brain activity without any invasive procedures. In transcranial alternating current stimulation (tACS), for example, small electrodes are placed on the scalp of the patient, and a weak electrical current is administered.
The theory behind these techniques is that when a direct current is applied between two or more electrodes placed on specific areas of the head, it makes certain neurons more or less likely to fire. This technique has been successfully used to treat conditions like depression and anxiety, and to aid recovery from stroke or brain injury.
The Study:
Previous meta-analyses have produced conflicting indications of efficacy. A Chinese research team consisting of sports and rehabilitative medicine professionals has just published a network meta-analysis to explore this further, through direct comparison of five critical outcome domains: inhibitory control, working memory, cognitive flexibility, inattention, hyperactivity and impulsivity.
To be included, randomized controlled trials needed to have participants diagnosed with ADHD, use sham control groups, and assess ADHD symptoms and executive functions – such as inhibitory control, working memory, cognitive flexibility, inattention, hyperactivity, and impulsivity – using standardized tests.
A total of thirty-seven studies encompassing 1,615 participants satisfied the inclusion criteria. It is worth noting, however, that the authors did not specify the number of randomized controlled trials nor the number of participants included in each arm of the network meta-analysis.
Furthermore, the team stated, “We checked for potential small study effects and publication bias by conducting comparison-adjusted funnel plots,” but did not share their findings. They also did not provide information on outcome variation (heterogeneity) among the RCTs.
Results:
Ultimately, none of the interventions produced significant improvements in ADHD symptoms, whether in inattention symptoms or hyperactivity/impulsivity symptoms. Likewise, none of the interventions produced significant improvements in inhibitory control. Some tDCS interventions enhanced working memory and cognitive flexibility, but details about trial numbers and participants were missing. The team concluded, “none of the NIBS interventions significantly improved inhibitory control compared to sham controls. … In terms of working memory, anodal tDCS over the left DLPFC plus cathodal tDCS over the right DLPFC … and anodal tDCS over the right inferior frontal cortex (rIFC) plus cathodal tDCS over the right supraorbital area ... were associated with significant improvements compared to sham stimulation. For cognitive flexibility, only anodal tDCS over the left DLPFC plus cathodal tDCS over the right supraorbital area demonstrated a statistically significant benefit relative to sham. ... Compared to the sham controls, none of the NIBS interventions significantly improved inattention. ... Compared to the sham controls, none of the NIBS interventions significantly improved hyperactivity and impulsivity.”
How Should We Interpret These Results?
In a word, skeptically.
If one were to read just the study’s abstract, which states, “The dual-tDCS and a-tDCS may be considered among the preferred NIBS interventions for improving cognitive function in ADHD”, it might seem that the takeaway from this study is that this combination of brain stimulation techniques might be a viable treatment option for those with ADHD. Upon closer inspection, however, the results do not suggest that any of these methods significantly improve ADHD symptoms. Additionally, this study suffers from quite a few methodological flaws, so any results should be viewed critically.
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. More Info
X
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
X