October 5, 2023

Can Computers Train the Brain to Cure ADHD?

It sounds like science fiction, but scientists have been testing computerized methods to train the brains of ADHD people to reduce both ADHD symptoms and cognitive deficits such as difficulties with memory or attention.  

Two main approaches have been used: cognitive training and neurofeedback. Cognitive training methods ask patients to practice tasks aimed at teaching specific skills, such as retaining information in memory or inhibiting impulsive responses.

Currently, results from ADHD brain studies suggest that the ADHD brain is not very different from the non-ADHD brain, but that ADHD leads to small differences in the structure, organization, and functioning of the brain. The idea behind cognitive training is that the brain can be reorganized to accomplish tasks through a structured learning process. Cognitive retraining helps people who have suffered brain damage, so it was logical to think it might help the types of brain differences seen in ADHD people. Several software packages have been created to deliver cognitive training sessions to ADHD people.

Neurofeedback was applied to ADHD after it had been observed, in many studies, that people with ADHD have unusual brain waves as measured by the electroencephalogram (EEG). We believe that these unusual brain waves are caused by the different ways that the ADHD brain processes information. Because these differences lead to problems with memory, attention, inhibiting responses, and other areas of cognition and behavior, it was believed that normalizing the brain waves might reduce ADHD symptoms.

In a neurofeedback session, patients sit with a computer that reads their brain waves via wires connected to their heads. The patient is asked to do a task on the computer that is known to produce a specific type of brain wave.  The computer gives feedback via sound or a visual on the computer screen that tells the patient how 'normal' their brainwaves are. By modifying their behavior, patients learn to change their brain waves. The method is called neurofeedback because it gives patients direct feedback about how their brains are processing information.

Both cognitive training and neurofeedback have been extensively studied. If you've been reading my blogs about ADHD, you know that I play by the rules of evidence-based medicine. My view is that the only way to be sure that a treatment works is to see what researchers have published in scientific journals. The highest level of evidence is a meta-analysis of randomized controlled clinical trials. This ensures that many rigorous studies have been conducted and summarized with a sophisticated mathematical method.  

Although both cognitive training and neurofeedback are rational methods based on good science, meta-analyses suggest that they do not help reduce ADHD symptoms. They may be helpful for specific problems, such as problems with memory, but more work is needed to be certain if that is true. The future may bring better news about these methods if they are modified and become more effective. You can learn more about non-pharmacologic treatment for ADHD from a book I recently edited: Faraone, S. V. &Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child Adolesc Psychiatr Clin N Am 23, xiii-xiv.

Related posts

No items found.

Updated Analysis of ADHD Prevalence in The United States

The National Health Interview Survey (NHIS) is conducted annually by the National Center for Health Statistics at the Centers for Disease Control and Prevention. The NHIS is done primarily through face-to-face computer-assisted interviews in the homes of respondents. But telephone interviews are substituted on request, or where travel distances make in-home visits impractical.  

For each interviewed family, only one sample child is randomly selected by a computer program.  

The total number of households with a child or adolescent aged 3-17 for the years 2018 through 2021 was 26,422. 

Based on responses from family members, 9.5% of the children and adolescents randomly surveyed throughout the United States had ADHD.  

This proportion varied significantly based on age, rising from 1.5% for ages 3-5 to 9.6% for ages 6-11 and to 13.4% for ages 12-17. 

There was an almost two-to-one gap between the 12.4% prevalence among males and the 6.6% prevalence among females. 

There was significant variation by race/ethnicity. While rates among non-Hispanic whites (11.1%) and non-Hispanic blacks (10.5%) did not differ significantly, these two groups differed significantly from Hispanics (7.2%) and Others (6.6%). 

There were no significant variations in ADHD prevalence based on highest education level of family members. 

But family income had a significant relationship with ADHD prevalence, especially at lower incomes. For family incomes under the poverty line, the prevalence was 12.7%. That dropped to 10.3% for family incomes above the poverty level but less than twice that level. For all others it dropped further to about 8.5%. Although that might seem like poverty causes ADHD, we cannot draw that conclusion.  Other data indicate that adults with ADHD have lower incomes.  That would lead to more ADHD in kids from lower income families.

There was also significant geographic variation in reported prevalence rates. It was highest in the South, at 11.3%, then the Midwest at 10%, the Northeast at 9.1%, with a jump down to 6.9% in the West. 

Overall ADHD prevalence did not vary significantly by year over the four years covered by this study. 

Study Conclusion:

This study highlights a consistently high prevalence of developmental disabilities among U.S. children and adolescents, with notable increases in other developmental delays and co-occurring learning and intellectual disabilities from 2018 to 2021. While the overall prevalence remained stable, these findings emphasize the need for continued research into potential risk factors and targeted interventions to address developmental challenges in youth.

It is also important to note that this study assessed the prevalence of ADHD being diagnosed by healthcare professionals.  Due to variations in healthcare accessibility across the country, the true prevalence of ADHD may differ still.

...

Are you struggling to get the care you need to manage your ADHD? Support The ADHD Evidence Project and get this step-by-step guide to getting the treatment you deserve: https://bit.ly/41gIQE9

March 7, 2025

Study Finds ADHD Associated With Sleep Issues, but Reports Improvement with Medication

Large U.S. Cohort Study Finds ADHD Associated With Sleep Insufficiency and Bedtime Irregularity, but Reports Improvement with ADHD Medication

Background:

An international research team used the nationally representative 2020–2021 U.S. Survey of Children’s Health to explore associations between ADHD, weeknight sleep insufficiency, and bedtime irregularity. 

"Sleep sufficiency" refers to the recommended amount of sleep for an individual. Sleep recommendations vary by age and other factors, such as health and lifestyle. For example, 7-9 hours is typically considered sufficient sleep for most adults, but an active teen may require closer to 10 hours of sleep per day.

Previous studies have shown that issues with both falling and staying asleep are common in individuals with ADHD.

The Study:

The team matched 7,671 children and adolescents with ADHD aged 3-17 to 51,572 controls.  

Noting that “The few available population-based studies examining sleep in children with ADHD have focused on circumscribed age ranges, limiting generalizability across childhood, and have seldom included controls,” and “bedtime irregularity has received limited empirical attention in children with ADHD,” this study focused on these aspects of sleep impairment. 

The study group excluded children and adolescents with ADHD with Down syndrome, current or lifetime cerebral palsy, and current or lifetime intellectual disability. In the control group, it excluded individuals with Down syndrome, cerebral palsy, intellectual disability, speech and language disorder, autism spectrum disorder, ADHD, anxiety, depression, behavioral or conduct problems, Tourette syndrome, and use of mental health services in the preceding 12 months. These groups were excluded to limit potential confounding factors.

After adjustment for covariates, parents of children and adolescents with ADHD reported weekday sleep insufficiency 65% more frequently than parents of controls.  

However, when comparing matched controls with children and adolescents with ADHD who were being treated with ADHD medication, there was no significant difference. 

Similarly, there was a small but significant effect size increase in bedtime irregularity among children and adolescents with ADHD relative to their matched controls. 

Yet there was also a small but significant effect size decrease in bedtime irregularity among those taking medication for ADHD relative to those who were unmedicated. 

The team noted, “Interestingly, here, ADHD medication use was linked to less bedtime irregularity across full and age-stratified samples, and not related to sleep insufficiency. However, research indicates the association between stimulant use and sleep problems is attenuated with longer duration of use, and also suggests the potential for stimulants to produce positive effects on sleep through reduced bedtime resistance. Further, ADHD medication type, not specified, may have influenced outcomes.” 

The Take-Away:

The study concluded that ADHD in children was linked to insufficient sleep and irregular bedtimes in a nationally representative sample, reinforcing and expanding previous research. The findings emphasize the influence of various factors on sleep insufficiency and bedtime irregularity, including race, screen time, poverty, ADHD severity, and depression.

February 28, 2025

Unmedicated Adult ADHD Linked to Dementia in Population Study

Background:

Noting that “the association between adult ADHD and dementia risk remains a topic of interest because of inconsistent results,” an Israeli study team tracked 109,218 members of a nonprofit Israeli health maintenance organization born between 1933 and 1952 who entered the cohort on January 1, 2003, without an ADHD or dementia diagnosis and were followed up to February 28, 2020. 

Israeli law forbids nonprofit HMOs from turning anyone away based on demographic factors,  health conditions, or medication needs, thereby limiting sample selection bias.  

The estimated prevalence of dementia in this HMO, as diagnosed by geriatricians, neurologists, or psychiatrists, is 6.6%. This closely matches estimates in Western Europe (6.9%) and the United States (6.5%). 

Method:

The team considered, and adjusted for, numerous covariates: age, sex, socioeconomic status, smoking, depression, obesity, chronic obstructive pulmonary disease, hypertension, atrial fibrillation, heart failure, ischemic heart disease, cerebrovascular disease, diabetes, Parkinson’s disease, traumatic brain injury, migraine, mild cognitive impairment, psychostimulants. 

With these adjustments, individuals diagnosed with ADHD were almost three times as likely to be subsequently diagnosed with dementia as those without ADHD. Men with ADHD were two and a half times more likely to be diagnosed with dementia, whereas women with ADHD were over three times more likely, than non-ADHD peers. 

More concerning still, persons with ADHD were 5.5 times more likely to be subsequently diagnosed with early onset dementia, as opposed to 2.4 times more likely to be diagnosed with late onset dementia. 

On the other hand, the team found no significant difference in rates of dementia between individuals with ADHD who were being treated with stimulant medications and individuals without ADHD. Those with untreated ADHD had three times the rate of dementia. The team nevertheless cautioned, “Due to the underdiagnosis of dementia as well as bidirectional misdiagnosis, this association requires further study before causal inference is plausible.” 

Conclusions and Relevance:

This study reinforces existing evidence that adult ADHD is associated with an increased risk of dementia. Notably, the increased risk was not observed in individuals receiving psychostimulant medication, however the mechanism behind this association is not clear.

These findings underscore the importance of reliable ADHD assessment and management in adulthood. They also highlight the need for further study into the link between stimulant medications and the decreased risk of dementia.

 

...

Struggling to get the care you need to manage your ADHD? Support The ADHD Evidence Project and get this step-by-step guide to getting the treatment you deserve: https://bit.ly/41gIQE9

February 25, 2025