April 1, 2021

Smart People Can Have ADHD Too

We know from many studies that ADHD is associated with a slightly lower intelligence quotient (IQ) and with problems in thinking known as executive function deficits. If that's the case, you might think that people with a high IQ cannot have ADHD.  You would be wrong. Data on groups sometimes mislead us about individuals. Although on average, ADHD people have IQ scores that are about 9 points lower than others, there is a wide spread of IQs in both ADHD and non-ADHD people. So many people with ADHD have higher IQs than those without ADHD and vice-versa. Moreover, studies of people with high IQs support the idea that ADHD can be validly diagnosed among very intelligent individuals.

A series of studies using Antshel and colleagues showed that the clinical profile of high IQ ADHD was very similar to what has been observed for ADHD in general. For example, like their less intelligent counterparts, high IQ ADHD children have an increased risk for mood, anxiety, and disruptive behavior disorders. Children with a high IQ and ADHD showed a pattern of familial transmission as well as cognitive, psychiatric, and behavioral impairments consistent with the diagnosis of ADHD. The degree to which ADHD persisted into adulthood was also similar between the two groups.

In studies of adults with ADHD, the same group concluded that "adults with ADHD and a high IQ display patterns of functional impairments, familiarity and psychiatric co-morbidities that parallel those found in the average-IQ adult ADHD population." Of particular interest, despite their high intelligence, High-IQ adults with ADHD show impaired executive functioning, and their performance on tests of executive functioning predicted life impairments.

Why are these data important? 
Milioni and colleagues argue that among higher IQ adults with ADHD, a higher degree of intellectual efficiency may compensate for deficits in executive functions. This ability to compensate allows them to succeed in many tasks, which otherwise might have been impaired by their ADHD symptoms. But, in many cases, such compensation is not sufficient or is too burdensome. When compensation fails, ADHD symptoms and other impairments emerge. When this occurs later in life, some clinicians are reluctant to diagnose ADHD. Caution is warranted, but clinicians need to know that the diagnosis of ADHD among high IQ is valid.

Antshel, K. M., S. V. Faraone, et al. (2008). "Temporal stability of ADHD in the high-IQ population: results from the MGH Longitudinal Family Studies of ADHD." J Am Acad Child Adolesc Psychiatry47(7): 817-825.
Antshel, K. M., S. V. Faraone, et al. (2009). "Is adult attention deficit hyperactivity disorder a valid diagnosis in the presence of high IQ?" Psychol Med39(8):1325-1335.
Antshel, K. M., S. V. Faraone, et al. (2010)."Executive functioning in high-IQ adults with ADHD."Psychol Med40(11): 1909-1918.
Antshel, K. M., S. V. Faraone, et al. (2007). "Inattention deficit hyperactivity disorder a valid diagnosis in the presence of high IQ? Results from the MGH Longitudinal Family Studies of ADHD."child Psychol Psychiatry48(7): 687-694.
Katusic, M. Z., R. G. Voigt, et al. (2011)."Attention-deficit hyperactivity disorder in children with high intelligence quotient: results from a population-based study." JDevBehavPediatr32(2): 103-109.

Related posts

No items found.

South Korean Nationwide Population Study: Prenatal Exposure to Acid-suppressive Medications Not Linked to Subsequent ADHD

Acid-suppressive medications, including proton pump inhibitors (PPIs) and histamine-2 (H2) receptor antagonists, are often prescribed during pregnancy to treat heartburn and gastroesophageal reflux disease. 

Research shows changes in the gut microbiome can negatively affect neurodevelopment. Since acid-suppressive medications alter gut microbiota, maternal use during pregnancy may impact offspring’s neurodevelopment. Because PPIs and H2 receptor antagonists readily cross the placental barrier, they could potentially influence fetal neurodevelopment.  

The link between prenatal exposure to acid-suppressive medications and major neuropsychiatric disorders is not well understood. With the use of these medications during pregnancy rising, it is important to assess their impact on children's long-term neurodevelopment. This study examined whether maternal use of acid-suppressive drugs is associated with increased risk of neuropsychiatric disorders in children, using a large, nationwide birth cohort from South Korea. 

South Korea operates a single-payer health insurance system, providing coverage for over 97% of its citizens. The National Health Insurance Service (NHIS) maintains a comprehensive database with sociodemographic details, medical diagnoses, procedures, prescriptions, health examinations, and vital statistics for all insured individuals. 

A Korean research team analyzed data from over three million mother-child pairs (2010–2017) to assess the risks of prenatal exposure to acid-suppressing medications. They applied propensity scoring to adjust for maternal age, number of children, medical history, and outpatient visits before pregnancy, to minimize confounding factors. That narrowed the cohort to just over 800,000 pairs, with half in the exposed group. 

With these adjustments, prenatal exposure to acid-suppressing medications was associated with 14% greater likelihood of being subsequently diagnosed with ADHD. 

Yet, when 151,737 exposed births were compared to the same number of sibling controls, no association was found between prenatal exposure and subsequent ADHD, which suggests unaccounted familial and genetic factors influenced the preceding results. 

The Take-Away:

Evidence of these medications negatively affecting pregnancies is mixed, mostly observational, and generally reassuring when these medications are used appropriately. Untreated GERD and gastritis, however, have known risks and associations with the development of various cancers. With no evidence of an association with ADHD (or for that matter any other neuropsychiatric disorder), there is no current evidence-based reason for expectant mothers to discontinue use of acid-suppressing medications.  

February 6, 2026

The 'Medication Tolerance' Myth in ADHD: What the Evidence Actually Says

For years, a persistent concern has shadowed the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD): Does the medication eventually stop working? Patients often report that their symptoms seem to return despite consistent use, leading to "dose escalation" or "medication holidays." A new systematic review from Sam Cortese’s team  published in CNS Drugs finally puts these concerns to the test by synthesizing decades of empirical research.

Before diving into the findings, you must understand two often-confused phenomena:

  • Tachyphylaxis (Acute Tolerance): A rapid decrease in response to a drug, often occurring within a single day (24 hours).
  • Tolerance: A gradual reduction in responsiveness over long-term exposure, requiring higher doses to achieve the original effect.

The review analyzed 17 studies covering over 10,000 individuals, and the results provide a much-needed reality check for the clinical community.

The researchers found preliminary evidence that acute tolerance (tachyphylaxis) can occur within a 24-hour window.

  • Subjective Effects: Studies showed that "drug liking" or feelings of euphoria from stimulants often peak and fade faster than the actual drug concentration in the blood.
  • Clinical Impact: This phenomenon is why some older, flat-release formulations were less effective than modern "ascending" delivery systems (like OROS-methylphenidate), which are designed to overcome this daily dip in efficacy.

The most important finding is that tolerance does not commonly develop to the therapeutic effects of ADHD medication in the long term. In one landmark study following children for up to 10 years, only 2.7% of participants lost their response to methylphenidate without a clear external explanation.  Doses, when adjusted for natural body growth, remained remarkably stable over years of treatment.

Consistent with the lack of therapeutic tolerance, the body does not become tolerant to the physical side effects of stimulants.  Increases in heart rate and blood pressure typically persist for as long as the medication is taken.  This underscores why clinicians must continue monitoring cardiovascular health throughout the entire duration of treatment.

If it’s Not Tolerance, What Is It?

If "tolerance" isn't real, why do some patients feel their medication is failing? The review suggests clinicians look at these alternative explanations:

  1. Natural Symptom Fluctuations: ADHD is not a static condition; symptoms naturally wax and wane over time regardless of treatment.
  2. Limited Compliance: Missed doses or inconsistent timing are often the real culprits behind "failing" efficacy.
  3. Life Events & Transitions: New jobs, academic pressures, or stressful life changes can increase the "functional demand" on a patient, making their current dose feel insufficient.
  4. Co-occurring Conditions: The emergence of anxiety, depression, or substance use disorders can mask or mimic a return of ADHD symptoms.

Why This Matters

These results provide clinicians the confidence to tell patients that their medication is unlikely to "wear out" permanently. Rather than immediately increasing a dose when symptoms flare, the first step should be a "clinical deep dive" into the patient's lifestyle, stress levels, and adherence.

For researchers, the review highlights a major gap: most existing studies are small, dated, or of low quality. There is a dire need for robust, longitudinal studies that track both the brain's response and the patient's environment over several years.

For people with ADHD, while your body might get "used to" the initial "buzz" of a stimulant within hours, its ability to help you focus and manage your life remains remarkably durable over the years.

Population Study Finds Association Between Extended Methylphenidate Use By Children and Subsequent Obesity

South Korean Nationwide Population Study Finds Association Between Extended Methylphenidate Use By Children and Subsequent Obesity–Little to No Effect on Adult Height

South Korean Nationwide Population Study Finds Association Between Extended Methylphenidate Use By Children and Subsequent Obesity–Little to No Effect on Adult Height

The Background:

Concerns remain about how ADHD and methylphenidate (MPH) use might affect children's health and growth, and especially how it may affect their adult height. While some studies suggest disrupted growth and a possible biological mechanism, the impact of ADHD prevalence and MPH use is still unclear. Children with ADHD may develop unhealthy habits – irregular eating, low physical activity, and poor sleep – that can contribute to obesity and reduced height. MPH’s appetite-suppressing effect can lead to skipped meals or overeating. Since growth hormone is mainly released during deep sleep, chronic sleep deprivation could plausibly slow growth and impair height development; however, a clear link between ADHD, MPH use, overweight, and shorter stature has never been firmly established. 

The Study:

South Korea has a single payer health insurance system that covers more than 97% of its population. A Korean research team used the National Health Insurance Service database to perform a nationwide population study to explore this topic further. 

The study involved 34,850 children, of whom 12,866 were diagnosed with ADHD. Of these children, 6,816 (53%) had received methylphenidate treatment, while 6,050 (47%) had not. Each patient with ADHD was precisely matched 1:1 by age, sex, and income level to a control participant without ADHD. The sex ratio was comparable in all groups.The team used Body Mass Index (BMI) as an indicator of overweight and obesity. 

The Results: 

The researchers found that being diagnosed with ADHD was associated with 50% greater odds of being overweight or obese as young adults, and over 70% greater odds of severe obesity (BMI > 30) compared to matched non-ADHD controls, regardless of whether or not they were medicated.

Those diagnosed with ADHD, but not on methylphenidate, had 40% greater odds of being overweight or obese, and over 55% greater odds of becoming severely obese, relative to matched non-ADHD controls. 

Methylphenidate users had 60% greater odds of being overweight or obese, and over 85% greater odds of becoming severely obese, relative to matched non-ADHD controls. 

There were signs of a dose-response effect. Less than a year’s exposure to methylphenidate was associated with roughly 75% greater odds of becoming severely obese, whereas exposure over a year or more raised the odds 2.3-fold, relative to matched non-ADHD controls. Using MPH increased the prevalence of overweight from 43.2% to 46.5%, with a greater prevalence among those using MPH for more than one year (50.5%).

It is important to note that most of this effect was from ADHD itself, with methylphenidate only assuming a predominant role in severe obesity among those with longer-term exposure to the medicine. 

As for height, children with ADHD were no more likely to be short of stature than matched non-ADHD controls. Being prescribed methylphenidate was associated with slightly greater odds (7%) of being short of stature, but there was no dose-response relationship. 

Conclusion: 

The team concluded, “patients with ADHD, particularly those treated with MPH, had a higher BMI and shorter height at adulthood than individuals without ADHD. Although the observed height difference was clinically small in both sexes and age groups, the findings suggest that long-term MPH exposure may be associated with growth and body composition, highlighting the need for regular monitoring of growth.” They also point out that “Despite these findings, the clinical relevance should be interpreted with caution. In our cohort, the mean difference in height was less than 1 cm (eg, maximum −0.6 cm in females) below commonly accepted thresholds for clinical significance.”  Likewise, increases in overweight/BMI were small. 

One problem with interpreting the BMI/obesity results is that some of the genetic variants that cause ADHD also cause obesity.  If that genetic load increases with severity of ADHD than the results from this study are confounded because those with more severe ADHD are more likely to be treated than those with less severe ADHD.

Due to these small effects along with the many study limitations noted by the authors, these results should be considered alongside the well-established benefits of methylphenidate treatment.

February 2, 2026