Understanding Attention to Social Images in Children with ADHD and Autism

NEWS TUESDAY: Understanding Attention to Social Images in Children with ADHD and Autism

In the field of mental health, professionals often use a variety of tools to diagnose and understand neurodevelopmental disorders such as Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD). One such tool is the Autism Diagnostic Observation Schedule (ADOS), which is specifically designed to help diagnose autism. However, the ADOS wasn't originally intended for children who have both autism and ADHD, though this comorbidity is not uncommon.

A recent study aimed to explore how children with ADHD, autism, or both, pay attention to social images, such as faces. The study focused on using eye-tracking technology to measure where children direct their gaze when viewing pictures, and how long they look at certain parts of the image. This is important because differences in visual attention can provide insights into the nature of these disorders.

The researchers included 84 children in their study, categorized into four groups: those with ASD, those with ADHD, those with both ASD and ADHD, and neurotypical (NT) children without these conditions. During the study, children were shown social scenes from the ADOS, and their eye movements were recorded. The ADOS assessment was administered afterward. To ensure that the results were not influenced by medications, children who were on stimulant medications for ADHD were asked to pause their medication temporarily.

The results of the study showed that children with ASD, whether they also had ADHD or not, tended to spend less time looking at faces compared to children with just ADHD or NT children. The severity of autism symptoms, measured by the Social Communication Questionnaire (SCQ), was associated with reduced attention to faces. Interestingly, ADHD symptom severity, measured by Conners' Rating Scales (CRS-3), did not correlate with how children looked at faces.

These findings suggest that measuring visual attention might be a valuable addition to the assessment process for ASD, especially in cases where ADHD is also present. The study indicates that if a child with ADHD shows reduced attention to faces, it might point to additional challenges related to autism. The researchers noted that more studies with larger groups of children are needed to confirm these findings, but the results are promising. They hope that such measures could eventually enhance diagnostic processes and help in managing the complexities of cases involving comorbidity of ADHD and ASD.

This research opens up the possibility of using eye-tracking as a supplementary diagnostic tool in the assessment of autism, providing a more nuanced understanding of how attentional differences in social settings are linked to ASD and ADHD.

May 14, 2024

Exploring Gut Microbiota and Diet in Autism and ADHD: What Does the Research Say?


In recent years, there has been growing interest in understanding the connection between our gut microbiota (the community of microorganisms in our digestive system) and various neurodevelopmental disorders like autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). A new study by Shunya Kurokawa and colleagues dives deeper into this area, comparing dietary diversity and gut microbial diversity among children with ASD, ADHD, their normally-developing siblings, and unrelated volunteer controls. Let's unpack what they found and what it means.

The Study Setup

The researchers recruited children aged 6-12 years diagnosed with ASD and/or ADHD, along with their non-ASD/ADHD siblings and the unrelated non-ASD/ADHD volunteers. The diagnoses were confirmed using standardized assessments like the Autism Diagnostic Observation Schedule-2 (ADOS-2). The study looked at gut microbial diversity using advanced DNA extraction and sequencing techniques, comparing alpha-diversity indices (which reflect the variety and evenness of microbial species within each gut sample) across different groups. They also assessed dietary diversity through standardized questionnaires.

Key Findings

The study included 98 subjects, comprising children with ASD, ADHD, both ASD and ADHD, their non-ASD/ADHD siblings, and the unrelated controls. Here's what they discovered:

Gut Microbial Diversity: The researchers found significant differences in alpha-diversity indices (like Chao 1 and Shannon index) among the groups. Notably, children with ASD had lower gut microbial diversity compared to unrelated neurotypical controls. This suggests disorder-specific differences in gut microbiota, particularly in children with ASD.

Dietary Diversity: Surprisingly, dietary diversity (assessed using the Shannon index) did not differ significantly among the groups. This finding implies that while gut microbial diversity showed disorder-specific patterns, diet diversity itself might not be the primary factor driving these differences.

What Does This Mean?

The study highlights intriguing connections between gut microbiota and neurodevelopmental disorders like ASD and ADHD. The lower gut microbial diversity observed in children with ASD points towards potential links between gut health and the pathophysiology of ASD. Understanding these connections is crucial for developing targeted therapeutic interventions.

Implications and Future Directions

This research underscores the importance of considering gut microbiota in the context of neurodevelopmental disorders. Moving forward, future studies should account for factors like co-occurrence of ASD and ADHD, as well as carefully control for dietary influences. This will help unravel the complex interplay between gut microbiota, diet, and neurodevelopmental disorders, paving the way for innovative treatments and interventions.

In summary, studies like this shed light on the intricate relationship between our gut health, diet, and brain function. By unraveling these connections, researchers are opening new avenues for understanding and potentially treating conditions like ASD and ADHD.

April 9, 2024

Meta-analysis suggests ADHD contributes significantly to alcohol use disorder in persons with comorbid bipolar disorder

Meta-analysis suggests ADHD contributes significantly to alcohol use disorder in persons with comorbid bipolar disorder

Bipolar disorder is a severe mental illness that afflicts over one in fifty persons worldwide. About a quarter of those with bipolar disorder also has alcohol use disorder (AUD). This in turn complicates the treatment of their bipolar disorder. It exacerbates their symptoms, makes them more likely to be suicidal, and increases the risk of hospitalization.

More than one in five persons with bipolar disorder also have ADHD, which is likewise known to be correlated with AUD. To what extent does ADHD contribute to AUD in persons with comorbid bipolar disorder?

A European study team recently conducted a systematic search of the peer-reviewed medical literature to address that question. The team identified eleven studies with a combined total of 2,734 participants that could be aggregated to perform a meta-analysis.

They found that persons with comorbid ADHD and bipolar disorder were two and a half times more likely to be diagnosed with alcohol use disorder than persons with bipolar disorder but no ADHD.

Between-study heterogeneity was negligible, and there was no sign of publication bias.

The authors concluded, "At least a portion of the high rates of AUD in BD may, thereby, be related to comorbid ADHD. Longitudinal studies are needed to clarify the nature of this relationship."

March 13, 2022

Liquid Medication Options for ADHD Adults with Autism Spectrum Disorder

Long-Acting Liquid Methylphenidate for Treating ADHD in Intellectually Capable Adults with Autism Spectrum Disorder

Treating ADHD With Methylphenidate in Adults With Autism

A team from Harvard Medical School and Massachusetts General Hospital conducted a six-week open-label trial of liquid-formulation extended-release methylphenidate (MPH-ER) to treat ADHD in adults with high-functioning autism spectrum disorder (HF-ASD). ASD is a lifelong disorder with deficits in social communication and interaction and restricted, repetitive behaviors. Roughly half of those diagnosed with ASD also are diagnosed with ADHD.

This was the first stimulant trial in adults with both ASD and ADHD. There were twelve males and three female participants, all with moderate to severe ADHD, and in their twenties, with IQ scores of at least 85.

The use of a liquid formulation enabled doses to be raised very gradually, starting with a daily dose of 5 mg(1mL) and titrating up to 60 mg over the first three weeks, then maintaining that level through the sixth week. Participants were reevaluated for ADHD symptoms every week during the six-week trial. The severity of ASD was assessed at the start, midpoint, and conclusion of the trial, as were other psychiatric symptoms.

Before the trial, researchers agreed on a combination of targets on two clinician-rated scoring systems that would have to be reached for treatment to be considered successful. One is a score of 2 or less on the CGI-S, a measure of illness severity, with scores ranging from 1 (normal, not at all ill) to 7 (most extremely ill). The other is a reduction of at least 30 percent in the AIS RS score, which combines each of 18 symptoms of ADHD on a severity grid (0=not present; 3=severe; overall minimum score: 0; overall maximum score: 54).

After the trial, twelve of the fifteen patients (80 percent) met the preset conditions for success. Fully fourteen (93 percent) saw a ≥ 30 percent reduction in their AISRS score, while twelve scored ≤ 2 on illness severity.

However, when using the patient-rated ASRS scoring system, only five (33 percent) saw a ≥ 30 percent reduction in ADHD severity.

Thirteen participants (87percent) reported at least one adverse event, and nine (60 percent) reported two or more. One reported a serious adverse event (attempted suicide) in a patient with multiple prior attempts. Because the attempt was not deemed due to medication, they continued and completed the trial. Seven participants experienced titration-limiting adverse events (headaches, palpitations, jaw pain, and insomnia). Headache was most frequent (53%), followed by insomnia and anxiety(33% each), and decreased appetite (27%).

During the trial, weight significantly decreased, while pulse significantly increased. There were no significant differences in other vital and cardiovascular measurements.

The authors concluded, "this OLT of short-term MPH-ER therapy documents that acute treatment with MPH-ER in young adults with ASD was associated with significant improvement in ADHD symptoms, mirroring the typically-expected magnitude of response observed in adults with only ADHD. Treatment with MPH-ER was well-tolerated, though associated with a higher than expected frequency of adverse events."

They also cautioned, "The results of this study need to be considered in light of some methodological limitations. This was an open-label study; therefore, assessments were not blind to treatment. We did not employ a placebo control group and, therefore, cannot separate the effects of treatment from time or placebo effects. ... firmer conclusions regarding the safety and efficacy of MPH-ER for the treatment of ADHD in HF-ASD populations await results from larger, randomized, placebo-controlled clinical trials."

August 7, 2021

Pharmacotherapy and ADHD in Adults with Autism Spectrum Disorder

How effective is pharmacotherapy of ADHD in adults with Autism Spectrum Disorder?

Autism spectrum disorder (ASD) is frequently comorbid with ADHD. Among adults with ADHD, as many as half are reported to also have ASD.

A Dutch team set out to answer two questions:


1)    Do adults with ADHD and comorbid ASD experience less effectiveness in pharmacological treatment for ADHD than adults with only ADHD
2)    Do adults with ADHD and comorbid ASD experience different or more severe side effects of pharmacological treatment for ADHD than adults with only ADHD, as measured in side effect scores, blood pressure, heart rate, and weight?

This was a retrospective study, using well-documented medical records, of the effects of drug treatment with methylphenidate (MPH), dexamphetamine (DEX), atomoxetine (ATX), bupropion, or modafinil.

The researchers compared 60 adults with comorbid ASD and ADHD to 226 adults with only ADHD. ADHD symptoms were scored using the Conner's ADHD Rating Scale: Self Report-Short Version (CAA RS: S-S). Side effects of ADHD medication were measured using either a 13-item or 20-item checklist with 4-point scales for item response. Researchers also tracked changes in body weight, blood pressure, and heart rate.

Following treatment, ADHD symptoms among the comorbid group declined by a quarter, and among the ADHD-only group by almost a third. There was no significant difference between men and women. Controlling for age, gender, and ADHD subtype, a comorbid diagnosis of ASD also did not significantly affect ADHD symptom reduction.

Turning to side effects, in the ADHD+ASD group, there were significant increases in decreased appetite and weight loss, and decreases in agitation, anxiety, and sadness/unhappiness. In the ADHD-only group, there were significant increases in decreased appetite, weight loss, and dry mouth, and decreases in sleeping disorder, nervousness, agitation, anxiety, and sadness/unhappiness. Yet there were no significant differences between the two groups. Side effects increased and decreased similarly in both. Likewise, there were no significant differences between the groups in changes in heart rate and blood pressure. The only significant difference in medication dosage was for bupropion, which was higher in the ADHD+ASD group, though without any sign of the difference in side effects.

The authors concluded that this retrospective study "showed pharmacological treatment of adults with diagnoses of ADHD and ASD to be just as successful as the pharmacological treatment of adults with only ADHD," but cautioned that "randomized controlled trial should be conducted to evaluate the effectiveness and possible side effects of pharmacological treatment for ADHD in patients with ASD more reliably."

August 3, 2021

Liquid Medication Options for ADHD Adults with Autism Spectrum Disorder

Long-Acting Liquid Methylphenidate for Treating ADHD in Intellectually Capable Adults with Autism Spectrum Disorder

A team from Harvard Medical School and Massachusetts General Hospital conducted a six-week open-label trial of liquid-formulation extended-release methylphenidate (MPH-ER) to treat ADHD in adults with high-functioning autism spectrum disorder (HF-ASD). ASD is a lifelong disorder with deficits in social communication and interaction and restricted, repetitive behaviors. Roughly half of those diagnosed with ASD also are diagnosed with ADHD.

This was the first stimulant trial in adults with both ASD and ADHD. There were twelve male and three female participants, all with moderate to severe ADHD, and in their twenties, with IQ scores of at least 85.

Use of a liquid formulation enabled doses to be raised very gradually, starting with a daily dose of 5mg (1mL) and titrating up to 60mg over the first three weeks, then maintaining that level through the sixth week.  Participants were reevaluated for ADHD symptoms every week during the six-week trial. Severity of ASD was assessed at the start, midpoint, and conclusion of the trial, as were other psychiatric symptoms.

Prior to the trial, researchers agreed on a combination of targets on two clinician-rated scoring systems that would have to be reached for treatment to be considered successful. One is a score of 2 or less on the CGI-S, a measure of illness severity, with scores ranging from 1 (normal, not at all ill) to 7 (most extremely ill). The other, a reduction of at least 30 percent in the AISRS score, which combines each of 18 symptoms of ADHD on a severity grid (0=not present; 3=severe; overall minimum score: 0; overall maximum score: 54).

At the conclusion of the trial, twelve of the fifteen patients (80 percent) met the preset conditions for success. Fully fourteen (93 percent) saw a ≥ 30 percent reduction in their AISRS score, while twelve scored ≤ 2 on illness severity.

However, when using the patient-rated ASRS scoring system, only five (33 percent) saw a ≥ 30 percent reduction in ADHD severity.

Thirteen participants (87 percent) reported at least one adverse event, and nine (60 percent) reported two or more. One reported a serious adverse event (attempted suicide) in a patient with multiple prior attempts.  Because the attempt was not deemed due to medication they continued in and completed the trial. Seven participants experienced titration-limiting adverse events (headaches, palpitations, jaw pain, and insomnia). Headache was most frequent (53%), followed by insomnia and anxiety (33% each), and decreased appetite (27%).

During the trial, weight significantly decreased, while pulse significantly increased. There were no significant differences in other vital and cardiovascular measurements.

The authors concluded, “this OLT of short-term MPH-ER therapy documents that acute treatment with MPH-ER in young adults with ASD was associated with significant improvement in ADHD symptoms, mirroring the typically-expected magnitude of response observed in adults with only ADHD. Treatment with MPH-ER was well-tolerated, though associated with a higher than expected frequency of adverse events.”

They also cautioned, “The results of this study need to be considered in light of some methodological limitations. This was an open-label study; therefore, assessments were not blind to treatment. We did not employ a placebo control group and, therefore, cannot separate the effects of treatment from time or placebo effects. … firmer conclusions regarding the safety and efficacy of MPH-ER for the treatment of ADHD in HF-ASD populations await results from larger, randomized, placebo-controlled clinical trials.”

February 8, 2021

Is Pharmacotherapy Effective for ADHD Adults with Autism Spectrum Disorder?

How effective is pharmacotherapy of ADHD in adults with Autism Spectrum Disorder?

The team of researchers found that pharmacological treatment of adults with diagnoses of ADHD and ASD seem to be just as successful as the pharmacological treatment of adults with only ADHD.

Autism spectrum disorder (ASD) is frequently comorbid with ADHD. Among adults with ADHD, as many as half are reported to also have ASD.

A Dutch team set out to answer two questions:

  • Do adults with ADHD and comorbid ASD experience less effectiveness of pharmacological treatment for ADHD than adults with only ADHD?
  • Do adults with ADHD and comorbid ASD experience different or more severe side effects of pharmacological treatment for ADHD than adults with only ADHD, as measured in side-effect scores, blood pressure, heart rate, and weight?

This was a retrospective study, using well-documented medical records, of the effects of drug treatment with methylphenidate (MPH), dexamphetamine (DEX), atomoxetine (ATX), bupropion, or modafinil.

The researchers compared 60 adults with comorbid ASD and ADHD to 226 adults with only ADHD. ADHD symptoms were scored using the Conner's ADHD Rating Scale: Self Report-Short Version (CAARS: S-S). Side effects of ADHD medication were measured using either a 13-item or 20-item checklist with 4-point scales for item response. Researchers also tracked changes in body weight, blood pressure, and heart rate.

Following treatment, ADHD symptoms among the comorbid group declined by a quarter, and among the ADHD-only group by almost a third. There was no significant difference between men and women. Controlling for age, gender, and ADHD subtype, a comorbid diagnosis of ASD also did not significantly affect ADHD symptom reduction.

Turning to side effects, in the ADHD+ASD group, there were significant increases in decreased appetite and weight loss, and decreases in agitation, anxiety, and sadness/unhappiness. In the ADHD-only group, there were significant increases in decreased appetite, weight loss, and dry mouth, and decreases in sleeping disorder, nervousness, agitation, anxiety, and sadness/unhappiness. Yet there were no significant differences between the two groups. Side effects increased and decreased similarly in both. Likewise, there were no significant differences between the groups in changes in heart rate and blood pressure. The only significant difference in medication dosage was for bupropion, which was higher in the ADHD+ASD group, though without any sign of difference in side effects.

The authors concluded that this retrospective study showed pharmacological treatment of adults with diagnoses of ADHD and ASD to be just as successful as the pharmacological treatment of adults with only ADHD, but cautioned that a randomized controlled trial should be conducted to evaluate the effectiveness and possible side effects of pharmacological treatment for ADHD in patients with ASD more reliably.

February 2, 2021